

Design and Performance Trade-offs in Parallelized RF SDR Architecture

Sami Kiminki Vesa Hirvisalo Ville Saari¹ Jussi Ryynänen Aarno Pärssinen² Antti Immonen² Tommi Zetterman

Aalto University
Computer Science and Eng.

Aalto University
Micro- and Nanosciences

Nokia Research Center

¹currently with EPCOS Nordic

²currently with Renesas Mobile Europe

Outline

- Parallel RF SDR platform for LTE and WLAN (UE)
- Holistic RF platform design
 - effect on RX and TX front-end filters
- Multi-radio opportunities
 - we show system-level data throughput opportunities by RF resource sharing (simulation results)

Parallel RF SDR Architecture

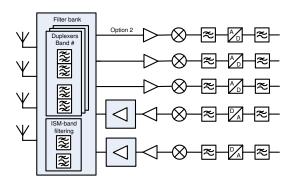


Figure: Archetype of a parallel multi-standard RF transceiver. The number of RX and TX pipes may be varied.

In-device RF Interference

- We analyse how the RX noise floor is accumulated from different sources
 - receiver noise figure
 - TX signal spilling to RX frequencies due to TX non-linearities
 - TX signal transferred to RX noise due to RX non-linearities
- By setting the allowed desensitization threshold, we can determine RX and TX filter requirements
- Focus on a difficult case
 - WLAN 2.4-GHz (2400–2483.5 MHz)
 - ► LTE Band 7 (TX: 2500–2570 MHz, RX: 2620–2690 MHz)

RX Filter Requirements

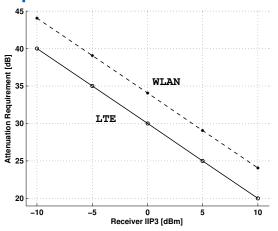


Figure: TX blocker attenuation requirement vs. IIP3 of the receiver to achieve 1 dB sensitivity loss

TX Filter Requirements

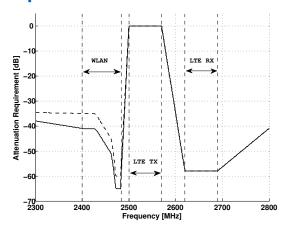


Figure: TX stopband attenuation requirement for LTE band 7 for sensitivity losses of 1 dB and 3 dB in 2.4-GHz WLAN receiver

Multi-radio Opportunities

- Non-dedicated RF resources
- Two approaches for sharing
 - more performance in the average case (high-end)
 - less hardware for same functionality (low-end)
- Sharing requires favourable conditions, e.g., discontinuous modes in use
 - high-end approach is currently more feasible

RF Resource Scheduling

- The fundamental idea
 - when one radio does not need full HW capabilities, use spare resources to boost another radio
 - all radios maxed out is not the common case
- Some techniques
 - semi-static scheduling: SISO vs MIMO
 - dynamic scheduling: fine-grain traffic shaping i.e., "TDM of chip resources"

LTE and WLAN on Shared Resources

- Assume discontinuous modes
 - LTE: DRX
 - WLAN: powersave
- ► The idea
 - LTE reserves the resources first
 - WLAN uses what is left
 - PS-Poll enables fine-grained traffic shaping for RX
- In experiments, we assume
 - ▶ bandwidths are 20 MHz (≈ 150 Mbps)
 - device has control on SISO vs MIMO
 - MCS & RI feedback

LTE and WLAN: Performance Estimation (1/2)

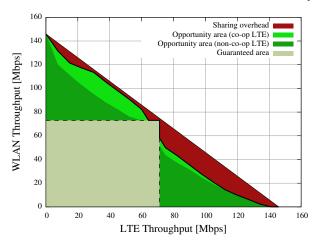


Figure: Performance estimation for 2 shared receivers

LTE and WLAN: Performance Estimation (2/2)

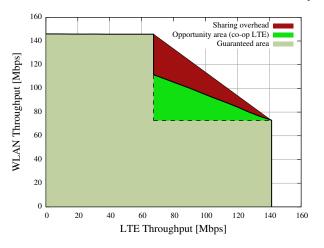


Figure: Performance estimation for 3 shared receivers

Conclusions

- RF systems must be designed as a whole, not only per-protocol
 - *e.g.*, additional filter requirements
- Parallel SDR approach brings new opportunities
 - Resource sharing for better system-level throughputs
 - Is there even a fundamental reason for dedicated RF pipes?
 - Cognitive radio connection:
 Don't share only the spectrum, share the resources too
- Resource sharing calls for further protocol work
 - We want better flexibility and predictability
 - ongoing in-device coexistence work helps in this
- Ultimately, we'd like to see general-purpose RF platforms
 - think CPUs, GPGPUs, FPGAs, ...

Bonus Slides

Resource Schedule Example

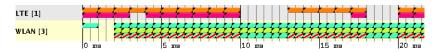
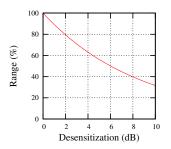
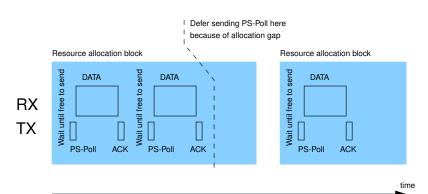




Figure: A resource schedule for LTE and WLAN on 2 RX + 2 TX platform. LTE allocates resources with higher priority.

Effect of Desensitization



Relation of desensitization and range loss

Visualization for 1 dB and 3 dB desensitization

Figure: Desensitization as range loss in free space

WLAN Frame Scheduling

Multi-radio Resource Schedule Example

External PNG slides