String Matching with Lookahead

Hannu Peltolaa, Jorma Tarhioa

aDepartment of Computer Science and Engineering, Aalto University, P.O. Box 15400, FI-00076 Aalto, Finland

Abstract

Forward-SBNDM is a recently introduced variation of the BNDM algorithm for exact string matching. Forward-SBNDM inspects a 2-gram in the text such that the first character is the last one of an alignment window of the pattern and the second one is then outside the window. We present a generalization of this idea by inspecting several lookahead characters beyond an alignment window and integrate it with SBNDMq, a q-gram variation of BNDM. As a result, we get several new variations of SBNDMq. In addition, we introduce a greedy skip loop for SBNDM2. We tune up our algorithms and the reference algorithms with 2-byte read. According to our experiments, the best of the new variations are faster than the winners of recent algorithm comparisons for English, DNA, and binary data.

Keywords: string matching, bit-parallelism, BNDM, 2-byte read, q-grams

1. Introduction

After the advent of the Shift-Or [2] algorithm, bit-parallel string matching methods have gained more and more interest. The BNDM (Backward Nondeterministic DAWG Matching) algorithm [17] is a nice example of an elegant, compact, and efficient piece of code for exact string matching. BNDM simulates the nondeterministic finite automaton of the reverse pattern even without constructing the actual automaton.

SBNDM2 [6, 11] is a simplified variation of BNDM. SBNDM2 starts processing of an alignment window of the pattern by reading two characters. Recently Faro and Lecroq [7] introduced Forward-SBNDM, a lookahead version of the SBNDM2 algorithm. Forward-SBNDM inspects a 2-gram (a string of 2 characters) where the latter text character follows an alignment window of the pattern. In this paper, we present a generalization of the lookahead idea and give new variations of SBNDMq [6], which is a q-gram extension of SBNDM2. In addition, we introduce a greedy skip loop for SBNDM2. Our point of view is the

\#Supported by the Academy of Finland (grant 134287).

Email addresses: hannu.peltola@aalto.fi (Hannu Peltola), jorma.tarhio@aalto.fi (Jorma Tarhio)

Preprint submitted to Elsevier October 15, 2013
practical efficiency of exact string matching algorithms. According to our experiments, the best of the new variations are clearly faster than the winners of recent algorithm comparisons [6, 9] for English, DNA, and binary data.

We use the following notations. Let a pattern $P = p_1 p_2 \ldots p_m$ and a text $T = t_1 t_2 \ldots t_n$ be two strings over a finite alphabet Σ. The task of exact string matching is to find all occurrences of P in T. Formally we search for all positions k such that $t_k t_{k+1} \ldots t_{k+m-1} = p_1 p_2 \ldots p_m$. In the pseudocode of the algorithms we use the following notations of the programming language C: ‘|’, ‘&’, ‘~’, ‘<<’, and ‘>>’ represent bitwise operations OR, AND, one’s complement, left shift, and right shift, respectively. The register width (or word size informally speaking) of a processor is denoted by w.

The rest of the paper is organized as follows. Since our work is based on SBNDMq and Forward-SBNDM, we start with presenting these algorithms in Section 2. In Section 3 we generalize Forward-SBNDM with wider lookahead and longer q-grams. In Section 4 the greedy skip loop is presented. Section 5 reviews the results of our experiments before concluding remarks in Section 6.

2. Previous algorithms

2.1. BNDM, SBNDM, and SBNDMq

In BNDM [17] the precomputed table B associates each character with a bit mask called an occurrence vector expressing its locations in the pattern. In each alignment window of the pattern, the algorithm reads the text from right to left until the whole pattern is recognized or the processed text string is not any factor (i.e. a substring) of the pattern. Between alignments, the algorithm shifts the pattern forward to the start position of the longest found prefix of the pattern, or if no prefix is found, over the current alignment window. With the bit-parallel shift-and technique the algorithm maintains a state vector D, which has one in each position where a substring of the pattern starts such that the substring is a suffix of the processed text string. SBNDM [18, 19] is a simplified version of BNDM. SBNDM does not explicitly care of prefixes, but shifts the pattern simply over the text character which caused D to become zero when the alignment is not a match.

SBNDMq [6] is a variation of SBNDM applying q-grams. In each alignment window, SBNDMq first processes q text characters $t_i, t_{i+1}, \ldots, t_{i+q-1}$ before testing the state vector D. If D is zero, this q-gram is not a factor of P, and then the pattern can be shifted forward $m - q + 1$ positions. If D is not zero, a single character at a time is read to the left until D becomes zero, which means that the suffix of the alignment window is not any more a factor of P, or an occurrence of the pattern has been found. The pseudocode of SBNDMq is shown as Alg. 1. $F(i, q)$ on line 6 is a shorthand notation for the expression

$$B[t_i] \& (B[t_{i+1}] << 1) \& \cdots \& (B[t_{i+q-1}] << (q - 1)).$$

In the original BNDM, the inner loop also recognizes the prefixes of the pattern. The leftmost one of the found prefixes determines the next alignment
Algorithm 1 SBNDMq \((P = p_1p_2 \cdots p_m, T = t_1t_2 \cdots t_n)\)

Require: 1 \leq q \leq m \leq w

/* Preprocessing */
1: for all \(c \in \Sigma\) do \(B[c] \leftarrow 0\)
2: for \(j \leftarrow 1\) to \(m\) do
3: \(B[p_j] \leftarrow B[p_j] \mid (1 << (m - j))\)
/* Searching */
4: \(i \leftarrow m - q + 1\)
5: while \(i \leq n - q + 1\) do
6: \(D \leftarrow F(i, q)\)
7: if \(D \neq 0\) then
8: \(j \leftarrow i - (m - q + 1)\)
9: repeat
10: \(i \leftarrow i - 1\)
11: \(D \leftarrow (D << 1) \& B[t_i]\)
12: until \(D = 0\)
13: if \(j = i\) then
14: report occurrence at \(j + 1\)
15: \(i \leftarrow i + s_0\)
16: \(i \leftarrow i + m - q + 1\)

window of BNDM. Like SBNDM, SBNDMq does not care of prefixes, but shifts the pattern over the text character which nullifies \(D\) when the alignment is not a match.

When an occurrence of the pattern is found, the shift is \(s_0\), which corresponds to the distance to the leftmost prefix of the pattern in itself and which is easily computed from the pattern (see [6]). We skip the details, because a conservative value \(s_0 = 1\) works well in practice. In the subsequent algorithms of this paper, we use the value \(s_0 = 1\).

2.2. Forward-SBNDM

Forward-SBNDM, a lookahead version of SBNDM2, was introduced by Faro and Lecroq [7]. The idea of the algorithm is the following. The occurrence vectors \(B\) are obtained from the occurrence vectors of SBNDM2 by shifting them one position to the left and placing a set bit to the right end. As in SBNDM2, a 2-gram \(x_1x_2\) is read before testing the state vector \(D\). In SBNDM2, \(x_1x_2\) is matched with the end of the pattern. In Forward-SBNDM (FSB for short), only \(x_1\) is matched with the end of the pattern, and \(x_2\) is a lookahead character following the current alignment window of the pattern. Note that \(B[x_2]\) can nullify several bits of \(D\), and therefore \(x_2\) enables longer shifts. The pseudocode of FSB is shown as Alg. 2.

The basic shift of FSB is \(m\) positions, which is one more than in SBNDM2. Therefore FSB is faster than SBNDM2 for large alphabets [9]. Because the length of the occurrence vector \(B\) of each character is \(m + 1\) in FSB, the upper limit for the pattern length is thus \(w - 1\).
Algorithm 2 FSB \((P = p_1p_2 \cdots p_m, T = t_1t_2 \cdots t_n)\)

Require: \(1 \leq m < w\)

/* Preprocessing */
1: for all \(c \in \Sigma\) do \(B[c] \leftarrow 1\)
2: for \(j \leftarrow 1\) to \(m\) do
3: \(B[p_j] \leftarrow B[p_j] \mid (1 << (m - j + 1))\)

/* Searching */
4: \(i \leftarrow m\)
5: while \(i \leq n\) do
6: \(D \leftarrow (B[t_{i+1}] << 1) \& B[t_i]\) /* \(F(i, 2)\) */
7: if \(D \neq 0\) then
8: \(j \leftarrow i\)
9: repeat
10: \(i \leftarrow i - 1\)
11: \(D \leftarrow (D << 1) \& B[t_i]\)
12: until \(D = 0\)
13: \(i \leftarrow i + m - 1\)
14: if \(j = i\) then
15: report occurrence at \(j + 1\)
16: \(i \leftarrow i + 1\)
17: \(i \leftarrow i + m\)

In a way FSB is a cross of SBNDM2 and Sunday’s QS [20]. QS was the first algorithm to use a lookahead character for shifting. Another famous algorithm using two lookahead characters is by Berry and Ravindran [3].

3. Generalization: Forward-SBNDM\((q, f)\)

Let us analyze how FSB works. The aim of the adjustment of the \(B\) vectors is to gain speed by allowing longer shifts than in SBNDM2. After reading \(x_1x_2\) there are three possible situations. (i) If \(x_1\) matches the last character of \(P\), reading continues leftwards. (ii) If \(x_1x_2\) is a factor of \(P\), reading also continues leftwards. (iii) Else \(D\) becomes zero and the pattern is shifted \(m\) positions (which is one more than in SBNDM2). The strength of FSB is that it is able to handle the cases (i) and (ii) in a single test \(D \neq 0\).

Durian et al. [5, 6] reported that SBNDMq is efficient also for \(q > 2\) on modern processors, although the number of read text characters increases with \(q\). This increment can be considerable in the case of short patterns, but this straightforward method is faster on average than SBNDM in most cases. Based on this observation we decided to generalize FSB with \(q\)-grams and longer lookaheads than one. So based on SBNDMq we constructed Forward-SBNDM\((q, f)\), FSB\((q, f)\) for short, where the lookahead \(f\) can be any integer between 0 and \(q - 1\). The pseudocode is given as Alg. 3.

Note that FSB\((q,0)\) is in practice the same as SBNDMq [6] if \(s_0 = 1\) is selected. If we keep \(f - q\) in a precomputed variable, then even the search
Algorithm 3 FSB(q, f) ($P = p_1 p_2 \cdots p_m, T = t_1 t_2 \cdots t_n$)

Require: $q - f \leq m \leq w - f$ and $0 \leq f < q$

/* Preprocessing */
1: for all $c \in \Sigma$ do $B[c] \leftarrow \text{\textasciitilde}0 >> (w - f)$ /* 1f */

2: for $j \leftarrow 1$ to m do

3: $B[p_j] \leftarrow B[p_j] | (1 << (m - j + f))$

/* Searching */
4: $i \leftarrow m - q + f$

5: while $i \leq n - q + 1$ do

6: $D \leftarrow F(i, q)$

7: if $D \neq 0$ then

8: $j \leftarrow i - (m - q + f + 1)$

9: repeat

10: $i \leftarrow i - 1$

11: $D \leftarrow (D << 1) \& B[t_i]$

12: until $D = 0$

13: if $j = i$ then

14: report occurrence at $j + 1$

15: $i \leftarrow i + 1$

16: $i \leftarrow i + m - q + f + 1$

part of FSB(q, f) is independent of the value of f. Note also that FSB(2,1) corresponds to the original FSB.

The occurrence vectors B of FSB(q, f) are obtained from the occurrence vectors of SBNDM by shifting them f positions to the left and placing f set bits to the right end (see Fig. 1 a–b) for an example). Because the length of the occurrence vectors is $m + f$, the upper limit for the pattern length is thus $w - f$. In addition it is required that $0 < q - f \leq m$. When changing q, only line 6 needs to be updated. Note that like SBNDMq, FSB(q, f) may read a few characters beyond the text (line 6) and also one character before the text (line 11). If necessary, the beginning and the end of the text can be handled separately.

Providing $m \leq w$, the worst case time complexity of BNDM is $O(mn)$, but the average time complexity is sublinear. The space complexity of BNDM is $O(|\Sigma|)$. It is straightforward to show that FSB(q, f) inherits these complexities when $m \leq w - f$.

Let $t_i \cdots t_{i+q-1} = x_1 \cdots x_q$ be the q-gram read on line 6 of Alg. 3. As in the case of the original FSB, there are three possible situations. (i) If $x_1 \cdots x_{q-k}$ matches a suffix of P for some $k = 0, \ldots, f$, reading continues leftwards. The extra set bits in the right end of B vectors ensure that the state vector D does not get nullified. (ii) If $x_1 \cdots x_q$ is a factor of P, reading continues leftwards. (iii) Else the pattern is shifted and the next alignment window ends at t_{i+m}. The shift is $m - q + f + 1$, which is f positions more than in SBNDMq.

The disadvantage of FSB(q, f) is that the probability to fall to the slow loop
a) banana
SBNDMq: B[n] = 001010
b) FSB(4,2):
B[b] = 10000011
B[a] = 01010111
B[n] = 00101011
B[x] = 00000011
c) 4-gram naxx:
x 00000011
x 00000011
a 01010111
n 00101011
00001000 = D
d) 4-gram D Conclusion Action
axxx 00000000 a: too short suffix shift
naxx 00001000 na: suffix proceed left
anax 00010000 ana: suffix proceed left
nana 00101000 suffix proceed left
anan 01000000 factor proceed left
xana 00000000 not a factor shift

Figure 1: a) The occurrence vector B for character n for $P = \text{banana}$ in SBNDMq. b) The occurrence vectors for the same P in FSB(4,2). c) Computation of D for 4-gram naxx. d) Actions on some 4-grams in FSB(4,2).

on lines 8–15 is larger than in SBNDMq, because the probability $F(i, x)$ to be nonzero is higher (or equal if characters depend statistically on each other) for $f > 0$ than for $f = 0$. Actually this increment is the probability of the case (i) above.

Example 1. Fig. 1 d) shows actions on some 4-grams for $P = \text{banana}$ in FSB(4,2).

Example 2. Let P be abcdefgh. The maximal shifts of SBNDM2 and SBNDM3 are 7 and 6, respectively. The maximal shift of FSB(3,1) is 7. Let us consider a text $T = \ldots \text{xabcdey} \ldots$. If SBNDM2 reads a 2-gram de, it scans back until x. If FSB(3,1) reads (from the same alignment) 3-gram dey, it immediately skips 7 positions onwards, because de is not a suffix of P and dey is not a factor of P.

Variation. The way how f lookahead characters are handled takes f low order bits in the state vector D, which reduces the maximal length of the pattern. This could be circumvented by using on line 6 a distinct occurrence vector table C_k (corresponding to B) for each of the q text positions. Then $F(i, q)$ is interpreted as

$$C_0[t_i] \& C_1[t_{i+1}] \& \cdots \& C_{q-1}[t_{i+q-1}],$$
where \(C_k[x] = (B[x] \ll k) + ((2^f - 1) \ll (q-f)) \gg (q-1-k) \) where \(B \) is the occurrence vector table of SBNDM\(_q\) as well as on line 11 of Alg. 3. If \(f = 0 \) the latter term is not needed. Note that \(2^f - 1 \) produces \(f \) set lowest order bits. The right shift takes care that they (get deleted or) come to the correct place.

Implementation note. In the C language the right operand of a shift operation must be shorter than the width of the left operand. Therefore on line 1 of Alg. 3, shifting has to be made in two parts or handled e.g. with if clause, when \(f = 0 \).

4. Greedy skip loop

Many string matching algorithms apply a so called skip loop, which is used for fast scanning before entering the matching phase. E.g. a basic skip loop of SBNDM is the following:

\[
\text{while } B[t_i] = 0 \text{ do } i \leftarrow i + m.
\]

Faro and Lecroq [7, 8] introduce several interesting variations of the skip loop. In the variation (originally for an algorithm of SBNDM2 type)

\[
\text{while } B[t_i] = 0 \text{ do } i \leftarrow i + d[t_{i+m}]
\]

the maximal step is \(2m \), where \(d \) is a shift table based on the bad character heuristics also known as the occurrence heuristics. We tried several variations of (1), but we did not succeed improving the speed of our algorithms in our test setting.

Here we present a new type of skip loop for SBNDM2. We call it greedy, because in some cases it reads lookahead characters that it does not utilize. The pseudocode is given as Alg. 4.

Two 2-grams \(t_{i+1} \) and \(t_{i+m-1}t_{i+m} \) are read in the skip loop. If both do not appear in \(P \), the shift is \(2m - 2 \). If the former appears in \(P \), the latter is not read (the operator \&\& denotes a short-circuit AND) and the computation proceeds as in SBNDM2. If only the latter 2-gram \(t_{i+m-1}t_{i+m} \) appears in \(P \), the next operation is a shift of \(m - 2 \). This means that the new former 2-gram is \(t_{i+m-2}t_{i+m-1} \). Here also a shift of \(m - 1 \) would be possible, but that alternative is a bit slower in practice, because we already know that \(t_{i+m-1}t_{i+m} \) is a factor of \(P \).

It is straightforward to generalize the greedy loop for SBNDM\(_q\). Instead of reading two 2-grams, the loop may hold reading of two \(q \)-grams or a \(q \)-gram and a 2-gram.

The form of the greedy skip loop is based on the observation that the cost of side assignments is very small. We tried several variations of the greedy loop on several processors. Unfortunately, no variation was clearly the best.
Algorithm 4 Greedy-SBNDM2 \((P = p_1 p_2 \cdots p_m, T = t_1 t_2 \cdots t_n) \)

Require: \(1 \leq m < w \)

/* Preprocessing */

1. for all \(c \in \Sigma \) do \(B[c] \leftarrow 0 \)
2. for \(j \leftarrow 1 \) to \(m \) do
3. \hspace{1em} \(B[p_j] \leftarrow B[p_j] | (1 << (m - j)) \)

/* Searching */

4. \(i \leftarrow m - 1 \)
5. while \(i \leq n \) do
6. \hspace{1em} while \((D \leftarrow ((B[t_{i+1}] \ll 1) \& B[t_i])) = 0 \) \&
7. \hspace{2em} \((B[t_{i+m}] \ll 1) \& B[t_{i+m-1}]) = 0 \) do
8. \hspace{3em} \(i \leftarrow i + 2m - 2 \)
9. \hspace{1em} if \(D \neq 0 \) then
10. \hspace{2em} \(j \leftarrow i \)
11. \hspace{3em} repeat
12. \hspace{4em} \(i \leftarrow i - 1 \)
13. \hspace{4em} \(D \leftarrow (D \ll 1) \& B[t_i] \)
14. \hspace{2em} until \(D = 0 \)
15. \hspace{2em} if \(j = i \) then
16. \hspace{3em} report occurrence at \(j + 1 \)
17. \hspace{2em} \(i \leftarrow i + 1 \)
18. \hspace{2em} else
19. \hspace{3em} \(i \leftarrow i + m - 2 \)

5. Experimental results

We implemented Greedy-SBNDM2 (GSB2 for short) and FSB\((q, f)\) versions up to \(q \leq 8 \) and for \(f \leq \min\{q - 1, 5\} \). For efficiency, \(f \) and \(q \) were compile time constants. For each variation, we implemented two versions. The standard version corresponds otherwise to the pseudocode, but the test of the outer loop was eliminated and a copy of the pattern was placed as a stopper after the last text character \(t_n \). The b-version applies simultaneous 2-byte processing, where two bytes are read with one instruction and used together in indexing of a table. As a result a part of bit shifts was moved to preprocessing as explained below. Otherwise the search part of the b-version is identical with the corresponding standard version.

2-byte processing. Reading several successive (unaligned) bytes at a time is a well-known technique. Fredriksson [10] was probably the first who analyzed its advantage. A string matching algorithm applying 2-byte read is in practice much faster than the traditional version applying 1-byte read. In some cases, the speedup becomes close to two, which is the theoretical limit. The cost of reading one or two bytes is almost the same on most x86 processors. Only crossing a word border causes small overhead [14]. A noteworthy
additional advantage is the possibility to move computation from the scanning phase to preprocessing. When applying 2-byte read in an algorithm of BNDM type, we replace a C language expression $B[t[i]] \& (B[t[i+1]]<<1)$ by $B2[*(uint16_t*)(t+i)]$, where $(uint16_t*)$ is a typecast and $t+i$ is a reference (pointer) to the character $t[i]$. The table $B2$ is computed during preprocessing. When processing a 4-gram, it is advantageous to process it as two separate 2-byte reads (see [6, 14] for details) in order to decrease the penalty of crossing word borders. The same holds also for larger values of q. Also the table that is indexed would be impractically huge for $q > 2$.

Unaligned 2-byte reads work also on some other CPU architectures than x86. During preprocessing we take care of endianness (the order in which integer values are stored as bytes in the computer memory). Let x and y be two successive characters. The indexing of the table $B2$ depends on endianness. On a little endian machine (like x86) $B2[(y<<8)+x]=B[x]\&(B[y]<<1)$ is applied, and on a big endian machine $B2[(x<<8)+y]=B[x]\&(B[y]<<1)$ is applied. Note that $B2$, the array of 2-byte integers, can be utilized even with the standard 1-byte read. Depending on the input, $B2[(t[i+1]<<8)+t[i]]$ is slightly faster than the original expression on many x86 processors.

Reference algorithms. In addition to variations of SBNDM$_q$ we tested four other algorithms:

- BR [3] by Berry and Ravindran,
- EBOM [7] by Faro and Lecroq,
- Hash3 [16] (originally New3) by Lecroq, and
- BMH2 [21, 14], a 2-gram variation of the Horspool algorithm [12].

We updated each algorithm with a stopper handling and made a b-version in the same way explained above for FSB(q, f).

Concerning BMH2, many researchers have worked out related variations [1, 15, 21, 22]. The basic idea has been mentioned already in the original article of Boyer and Moore [4]. BR is a cross of BMH2 and Sunday’s QS algorithm [20]. In BMH2 the shift is based on the last 2-gram of the text window aligned with the pattern, whereas BR applies the 2-gram locating two positions further to the right. EBOM is an efficient implementation of the oracle automaton utilizing 2-grams.

Because Hash3 applies a 3-gram, the application of 2-byte read is a bit different. The statements

\begin{align*}
 h &= \text{text[i-2]};
 h &= ((h<<1) + \text{text[i-1]});
 h &= ((h<<1) + \text{text[i]});
\end{align*}

are replaced by

\begin{align*}
 h &= d2[*(uint16_t*)(\text{text+i-2})]\text{+text[i]};
\end{align*}
BMH2 and BR are examples of old algorithms. EBOM and Hash3 are the winners of several test cases in a recent comparison [9].

FSB(q, f)b for odd q was implemented so that the q-gram is processed using (q−1)/2 consecutive 2-byte reads followed by one 1-byte read. Because FSB(q,0) is in practice the same as SBNDMq, q = 2, 3, ..., the former ones also serve as reference methods, because the latter ones are among the best in our recent comparison [6].

Computer and test setting. We run the tests on a Dell Precision T1500 containing Intel Core i7-860 2.8GHz CPU (8 KiB L1 data cache/core, 256 KiB L2 cache/core, 8 MiB L3 cache, 64 byte line size) running with the 64-bit Ubuntu kernel 2.6.35-30. The programs in C were compiled with the gcc compiler version 4.4.5 to run either in the 32-bit mode or in the 64-bit mode using the optimization level -O3.

In the main tests we used three texts: English (4 MB), DNA (2 MB), and binary (2 MB). The English text was the KJV Bible. The binary text was a random text in the alphabet of two characters. Sets of patterns of various lengths were randomly taken from each text. Each set contained 200 patterns. Note that the English patterns did not necessarily start or end with an entire English word. Thus we followed the experiments in [7].

In order to eliminate possible cache effects, we also tested the algorithms with the five times concatenated English text, which did not fit to the cache. Interestingly, the change of search speed depended on the pattern length. The search speed decreased (from 1% to 11% on the average) when the patterns got longer. We assume that the memory bus throughput is the limiting factor in this case.

All the algorithms were tested in a testing framework of Hume and Sunday [13]. The data was in the main memory so that I/O time had no effect to speed measurements. The search speeds shown are averages of 300 runs (if not otherwise told). Accuracy of the results is about 1%.

With 32-bit bitvectors the maximum pattern length for FSB(*,3) is 29. Therefore some results of FSB(4,3) for length 30 are missing.

Text 1: English. The search speeds on English data are shown in Table 1. The best speed for each pattern set has been boxed. Both GSB2 and EBOM were among the fastest standard algorithms for \(m \leq 15 \). Especially FSB(3,1), FSB(4,0), FSB(4,1), and FSB(4,2) worked well for longer patterns. Among the b-versions GSB2b was good for short patterns. FSB(4,0)b, FSB(4,1)b, and FSB(4,2)b were excellent for \(m \geq 7 \).

As explained in Section 3, FSB(4,f), \(f > 0 \), was developed from SBNDM4 \(\simeq \) FSB(4,0). For most values of \(m \), two of the FSB(4,f) algorithms, \(f > 0 \), were faster than FSB(4,0). The same was true for the b-versions. Note that for \(m = 4 \), FSB(4,0) and FSB(4,0)b process the whole pattern in the outer loop of the algorithm, and the shift is then always one! As explained in Section 4, GSB2 was developed from SBNDM2 \(\simeq \) FSB(2,0). GSB2 was faster than FSB(2,0) for short patterns. The same was again true for the b-versions (using 2-byte read).
Table 1: Searching speed of algorithms GB/s (for a single pattern) using English text and patterns. Speeds are averages of 100 runs in 32-bit mode using 32-bit bitvectors.

<table>
<thead>
<tr>
<th>pattern</th>
<th>algorithm</th>
<th>4</th>
<th>7</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>4</th>
<th>7</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>standard version</td>
<td>1.41</td>
<td>1.23</td>
<td>2.07</td>
<td>3.23</td>
<td>3.68</td>
<td>4.35</td>
<td>2.15</td>
<td>3.11</td>
<td>3.59</td>
<td>4.13</td>
<td>4.47</td>
<td>5.21</td>
</tr>
<tr>
<td></td>
<td>b-version with 2-byte read</td>
<td>1.24</td>
<td>2.04</td>
<td>2.60</td>
<td>3.24</td>
<td>3.76</td>
<td>4.55</td>
<td>1.99</td>
<td>2.97</td>
<td>3.50</td>
<td>4.09</td>
<td>4.49</td>
<td>5.29</td>
</tr>
<tr>
<td></td>
<td>GSB2</td>
<td>1.12</td>
<td>1.71</td>
<td>2.15</td>
<td>2.79</td>
<td>3.29</td>
<td>4.08</td>
<td>1.52</td>
<td>2.20</td>
<td>2.68</td>
<td>3.34</td>
<td>3.92</td>
<td>4.65</td>
</tr>
<tr>
<td></td>
<td>FSB(2,0)</td>
<td>1.03</td>
<td>1.92</td>
<td>2.07</td>
<td>3.77</td>
<td>4.69</td>
<td>6.21</td>
<td>1.86</td>
<td>3.29</td>
<td>4.35</td>
<td>5.69</td>
<td>6.68</td>
<td>7.94</td>
</tr>
<tr>
<td></td>
<td>FSB(2,1)</td>
<td>.300</td>
<td>1.16</td>
<td>1.97</td>
<td>3.22</td>
<td>4.33</td>
<td>6.37</td>
<td>.568</td>
<td>2.13</td>
<td>3.51</td>
<td>5.43</td>
<td>7.05</td>
<td>9.51</td>
</tr>
<tr>
<td></td>
<td>FSB(3,1)</td>
<td>.565</td>
<td>1.37</td>
<td>2.11</td>
<td>3.28</td>
<td>4.35</td>
<td>6.34</td>
<td>1.42</td>
<td>3.26</td>
<td>4.78</td>
<td>7.02</td>
<td>8.37</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>FSB(4,0)</td>
<td>.802</td>
<td>1.56</td>
<td>2.26</td>
<td>3.35</td>
<td>4.44</td>
<td>6.28</td>
<td>1.86</td>
<td>4.49</td>
<td>9.30</td>
<td>6.73</td>
<td>8.28</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>FSB(4,1)</td>
<td>.831</td>
<td>1.40</td>
<td>1.95</td>
<td>2.85</td>
<td>3.79</td>
<td>5.72</td>
<td>1.52</td>
<td>2.16</td>
<td>2.93</td>
<td>4.24</td>
<td>5.51</td>
<td>5.67</td>
</tr>
<tr>
<td></td>
<td>BR</td>
<td>1.09</td>
<td>1.59</td>
<td>2.06</td>
<td>2.88</td>
<td>3.65</td>
<td>4.78</td>
<td>1.24</td>
<td>1.81</td>
<td>2.35</td>
<td>3.27</td>
<td>4.19</td>
<td>5.43</td>
</tr>
<tr>
<td></td>
<td>Hash3</td>
<td>.414</td>
<td>1.02</td>
<td>1.60</td>
<td>2.53</td>
<td>3.39</td>
<td>5.01</td>
<td>.436</td>
<td>1.07</td>
<td>1.67</td>
<td>2.64</td>
<td>3.53</td>
<td>5.23</td>
</tr>
<tr>
<td></td>
<td>EBOM</td>
<td>1.23</td>
<td>1.99</td>
<td>2.48</td>
<td>3.07</td>
<td>3.49</td>
<td>4.15</td>
<td>1.60</td>
<td>2.42</td>
<td>2.91</td>
<td>3.45</td>
<td>3.84</td>
<td>4.51</td>
</tr>
</tbody>
</table>

Note that FSB(2,1) ≃ the original FSB was slower than SBNDM2 ≃ FSB(2,0). (The same was true for the b-versions.) We made an additional test with an alphabet of 128 characters in order to verify that FSB(2,1) is faster than FSB(2,0) in a text of a larger alphabet as shown in [9].

Table 2: Average speedup of 2-byte read based on Table 1.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSB2</td>
<td>1.32</td>
</tr>
<tr>
<td>FSB(2,0)</td>
<td>1.34</td>
</tr>
<tr>
<td>FSB(2,1)</td>
<td>1.24</td>
</tr>
<tr>
<td>FSB(3,1)</td>
<td>1.56</td>
</tr>
<tr>
<td>FSB(4,0)</td>
<td>1.72</td>
</tr>
<tr>
<td>FSB(4,1)</td>
<td>2.15</td>
</tr>
<tr>
<td>FSB(4,2)</td>
<td>2.03</td>
</tr>
<tr>
<td>FSB(4,3)</td>
<td>1.51</td>
</tr>
<tr>
<td>BMH2</td>
<td>1.96</td>
</tr>
<tr>
<td>BR</td>
<td>1.14</td>
</tr>
<tr>
<td>Hash3</td>
<td>1.05</td>
</tr>
<tr>
<td>EBOM</td>
<td>1.17</td>
</tr>
</tbody>
</table>

Relative speedup of 2-byte read is shown in Table 2. Numbers are arithmetic means of the speed ratios calculated from the data of Table 1. The overall average speedup was 1.52 in this test set. The speedup was the biggest for $m = 4$ and decreased as patterns get longer. Note that two of the algorithms exceeded the theoretical limit of two, possibly due to advantageous pipelining.

Text 2: DNA. The search speeds are shown in Table 3. On DNA data, larger values of q were better than on natural language. On the other hand the probability to fall to the slow loop, i.e. the inner loop of an algorithm, increases with f. When q is large enough, it is advantageous to have $f > 0$. Table 3
shows that values of q, that are one larger or smaller than the best one, also work quite well.

Table 3: Searching speed of algorithms GB/s (per a single pattern) using DNA text and patterns. Speeds are averages of 300 runs with 64-bit code.

<table>
<thead>
<tr>
<th>patterns→algorithm</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>b-version with 2-byte read</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSB2</td>
<td>1.19</td>
<td>2.01</td>
<td>2.92</td>
<td>3.86</td>
<td>4.69</td>
<td>5.60</td>
<td>1.22</td>
</tr>
<tr>
<td>FSB(4,0)</td>
<td>2.23</td>
<td>4.42</td>
<td>5.72</td>
<td>6.62</td>
<td>7.37</td>
<td>8.26</td>
<td>5.42</td>
</tr>
<tr>
<td>FSB(4,1)</td>
<td>2.23</td>
<td>4.19</td>
<td>5.37</td>
<td>6.40</td>
<td>7.13</td>
<td>7.88</td>
<td>3.41</td>
</tr>
<tr>
<td>FSB(5,0)</td>
<td>1.81</td>
<td>4.46</td>
<td>6.55</td>
<td>8.37</td>
<td>9.53</td>
<td>10.9</td>
<td>2.77</td>
</tr>
<tr>
<td>FSB(5,1)</td>
<td>2.04</td>
<td>4.59</td>
<td>6.59</td>
<td>8.34</td>
<td>9.51</td>
<td>10.7</td>
<td>3.05</td>
</tr>
<tr>
<td>FSB(6,0)</td>
<td>1.26</td>
<td>3.62</td>
<td>5.76</td>
<td>7.77</td>
<td>9.44</td>
<td>11.0</td>
<td>2.49</td>
</tr>
<tr>
<td>FSB(6,1)</td>
<td>1.55</td>
<td>3.95</td>
<td>6.18</td>
<td>8.17</td>
<td>9.69</td>
<td>11.2</td>
<td>2.92</td>
</tr>
<tr>
<td>FSB(6,2)</td>
<td>1.76</td>
<td>4.11</td>
<td>6.29</td>
<td>8.20</td>
<td>9.72</td>
<td>11.2</td>
<td>3.20</td>
</tr>
<tr>
<td>FSB(6,3)</td>
<td>1.86</td>
<td>4.07</td>
<td>6.05</td>
<td>7.89</td>
<td>9.31</td>
<td>10.8</td>
<td>3.07</td>
</tr>
<tr>
<td>FSB(7,0)</td>
<td>.882</td>
<td>3.02</td>
<td>5.04</td>
<td>7.00</td>
<td>8.68</td>
<td>10.2</td>
<td>1.56</td>
</tr>
<tr>
<td>FSB(7,1)</td>
<td>1.10</td>
<td>3.23</td>
<td>5.23</td>
<td>7.16</td>
<td>8.89</td>
<td>10.3</td>
<td>1.93</td>
</tr>
<tr>
<td>FSB(7,2)</td>
<td>1.31</td>
<td>3.38</td>
<td>5.34</td>
<td>7.23</td>
<td>8.86</td>
<td>10.4</td>
<td>2.27</td>
</tr>
<tr>
<td>FSB(7,3)</td>
<td>1.49</td>
<td>3.54</td>
<td>5.46</td>
<td>7.33</td>
<td>8.93</td>
<td>10.4</td>
<td>2.57</td>
</tr>
<tr>
<td>BMH2</td>
<td>1.27</td>
<td>1.89</td>
<td>2.15</td>
<td>2.41</td>
<td>2.45</td>
<td>2.60</td>
<td>1.89</td>
</tr>
<tr>
<td>BR</td>
<td>.805</td>
<td>1.11</td>
<td>1.26</td>
<td>1.43</td>
<td>1.44</td>
<td>1.50</td>
<td>.859</td>
</tr>
<tr>
<td>Hash3</td>
<td>1.35</td>
<td>2.72</td>
<td>3.67</td>
<td>4.41</td>
<td>4.93</td>
<td>5.31</td>
<td>1.36</td>
</tr>
<tr>
<td>EBOM</td>
<td>1.09</td>
<td>1.76</td>
<td>2.38</td>
<td>2.99</td>
<td>3.51</td>
<td>4.09</td>
<td>1.13</td>
</tr>
</tbody>
</table>

Text 3: Binary. The search speeds are shown in Table 4. Large values of q were good with binary data as expected, because otherwise the probability to fall to slow loop would be too high. Results for FSB(7,*') indicate that with parameter values $f > 3$ are not competitive.

Other processors. We tested the algorithms also in several other computers having a x86 processor (Pentium III or newer). The relative performance of the algorithms was mostly similar. The only exception was Atom N450, on which BMH2b was a clear winner.

On binary data, the relatively good performance of FSB(4,3) on IBM ThinkPad X61s having Intel Core 2 Duo Processor L7300 was surprising. With FSB(4,3) only one text character comes from the alignment window, and therefore the probability to fall to the slow loop is quite high. Also the relative performance of Hash3 was much weaker.

Memory usage and preprocessing time. All b-versions using 2-byte read require additional 262 kB (bitvectors of 32 bits) or 524 kB (bitvectors of 64 bits). The initialization of the additional table takes about 15–20 milliseconds for 200 patterns. Preprocessing of FSB(q, f) is more laborious when $f > 0$. In our tests the preprocessing time increased at most 6%.
Table 4: Searching speed of algorithms GB/s (per a single pattern) using binary text and patterns. Speeds are averages of 300 runs with 64-bit code.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 GB/s</td>
<td>2 GB/s</td>
<td>3 GB/s</td>
<td>4 GB/s</td>
<td>5 GB/s</td>
<td>6 GB/s</td>
<td>13 GB/s</td>
<td>21 GB/s</td>
<td>30 GB/s</td>
<td>39 GB/s</td>
<td>49 GB/s</td>
<td>58 GB/s</td>
</tr>
<tr>
<td>GB2</td>
<td>.586</td>
<td>.661</td>
<td>.632</td>
<td>.846</td>
<td>.815</td>
<td>.870</td>
<td>.574</td>
<td>.661</td>
<td>.929</td>
<td>.722</td>
<td>.739</td>
<td>.945</td>
</tr>
<tr>
<td>FSB(4,0)</td>
<td>.566</td>
<td>.739</td>
<td>.722</td>
<td>.978</td>
<td>.945</td>
<td>.978</td>
<td>.566</td>
<td>.739</td>
<td>.929</td>
<td>.722</td>
<td>.739</td>
<td>.945</td>
</tr>
<tr>
<td>FSB(4,1)</td>
<td>.566</td>
<td>.739</td>
<td>.722</td>
<td>.978</td>
<td>.945</td>
<td>.978</td>
<td>.566</td>
<td>.739</td>
<td>.929</td>
<td>.722</td>
<td>.739</td>
<td>.945</td>
</tr>
<tr>
<td>FSB(5,0)</td>
<td>.566</td>
<td>.739</td>
<td>.722</td>
<td>.978</td>
<td>.945</td>
<td>.978</td>
<td>.566</td>
<td>.739</td>
<td>.929</td>
<td>.722</td>
<td>.739</td>
<td>.945</td>
</tr>
<tr>
<td>FSB(5,1)</td>
<td>.566</td>
<td>.739</td>
<td>.722</td>
<td>.978</td>
<td>.945</td>
<td>.978</td>
<td>.566</td>
<td>.739</td>
<td>.929</td>
<td>.722</td>
<td>.739</td>
<td>.945</td>
</tr>
<tr>
<td>FSB(6,0)</td>
<td>.566</td>
<td>.739</td>
<td>.722</td>
<td>.978</td>
<td>.945</td>
<td>.978</td>
<td>.566</td>
<td>.739</td>
<td>.929</td>
<td>.722</td>
<td>.739</td>
<td>.945</td>
</tr>
<tr>
<td>FSB(6,1)</td>
<td>.566</td>
<td>.739</td>
<td>.722</td>
<td>.978</td>
<td>.945</td>
<td>.978</td>
<td>.566</td>
<td>.739</td>
<td>.929</td>
<td>.722</td>
<td>.739</td>
<td>.945</td>
</tr>
<tr>
<td>FSB(6,2)</td>
<td>.566</td>
<td>.739</td>
<td>.722</td>
<td>.978</td>
<td>.945</td>
<td>.978</td>
<td>.566</td>
<td>.739</td>
<td>.929</td>
<td>.722</td>
<td>.739</td>
<td>.945</td>
</tr>
<tr>
<td>FSB(6,3)</td>
<td>.566</td>
<td>.739</td>
<td>.722</td>
<td>.978</td>
<td>.945</td>
<td>.978</td>
<td>.566</td>
<td>.739</td>
<td>.929</td>
<td>.722</td>
<td>.739</td>
<td>.945</td>
</tr>
<tr>
<td>FSB(7,0)</td>
<td>.566</td>
<td>.739</td>
<td>.722</td>
<td>.978</td>
<td>.945</td>
<td>.978</td>
<td>.566</td>
<td>.739</td>
<td>.929</td>
<td>.722</td>
<td>.739</td>
<td>.945</td>
</tr>
<tr>
<td>FSB(7,1)</td>
<td>.566</td>
<td>.739</td>
<td>.722</td>
<td>.978</td>
<td>.945</td>
<td>.978</td>
<td>.566</td>
<td>.739</td>
<td>.929</td>
<td>.722</td>
<td>.739</td>
<td>.945</td>
</tr>
<tr>
<td>FSB(7,2)</td>
<td>.566</td>
<td>.739</td>
<td>.722</td>
<td>.978</td>
<td>.945</td>
<td>.978</td>
<td>.566</td>
<td>.739</td>
<td>.929</td>
<td>.722</td>
<td>.739</td>
<td>.945</td>
</tr>
<tr>
<td>BMH2</td>
<td>.369</td>
<td>.375</td>
<td>.373</td>
<td>.371</td>
<td>.373</td>
<td>.374</td>
<td>.496</td>
<td>.502</td>
<td>.500</td>
<td>.497</td>
<td>.511</td>
<td>.513</td>
</tr>
<tr>
<td>BR</td>
<td>.228</td>
<td>.214</td>
<td>.232</td>
<td>.223</td>
<td>.222</td>
<td>.233</td>
<td>.244</td>
<td>.229</td>
<td>.248</td>
<td>.239</td>
<td>.237</td>
<td>.248</td>
</tr>
<tr>
<td>Hash3</td>
<td>.610</td>
<td>.820</td>
<td>.834</td>
<td>.796</td>
<td>.832</td>
<td>.865</td>
<td>.613</td>
<td>.826</td>
<td>.847</td>
<td>.843</td>
<td>.872</td>
<td>.874</td>
</tr>
<tr>
<td>EBOM</td>
<td>.422</td>
<td>.767</td>
<td>.109</td>
<td>.137</td>
<td>.164</td>
<td>.187</td>
<td>.436</td>
<td>.781</td>
<td>.111</td>
<td>.139</td>
<td>.168</td>
<td>.191</td>
</tr>
</tbody>
</table>

6. Concluding remarks

For long we believed that the tuned algorithms of Hume and Sunday [13] were the final solution for exact string matching of natural language. Only long patterns offered space for improvement. But the development of processor technology changed the situation: new algorithms, especially those applying bit-parallelism, can be much faster than the old ones.

In this paper, we have presented a generalization of the Forward-SBNDM algorithm and introduced the Greedy-SBNDM2 algorithm. We have shown that the new algorithms are competitive for a wide range of pattern lengths in English, DNA, and binary texts. Generally the number of lookahead characters f has smaller influence than the q-gram size. Lookahead characters can appreciably increase the shift length in the case of pattern lengths $q - f \leq m \leq 3q$ and thus make the algorithms faster.

In addition we tested the effect of 2-byte read. The speedup of simultaneous 2-byte processing varied from a few percents to the factor of two. It is clear that 2-byte read should be used whenever it is possible.

When comparing the search speed of two string matching algorithms, several factors affect the result: processor, memory, compiler, stage of tuning, text, pattern. Even a small change in the pattern may switch the order of the algorithms. Thus there is no absolute truth in which algorithm is the best. Because the continuing development of processor and compiler technologies, it is also difficult to anticipate how present algorithms manage after a few years. We have
experienced several times how the speed order of old algorithms has changed when switching to a new computer.

In experimental comparisons, the choice of pattern sets may have a noticeable effect. If the patterns were words (or their substrings) of a natural language (more specifically synthetic languages, e.g., Indo-European languages), the character distribution of the patterns would be different from that of the text, because space is the most common character. This has influence on the behavior of skip loops.

References

