
INSTANS: High-Performance Event Processing
with Standard RDF and SPARQL

Mikko Rinne, Esko Nuutila, and Seppo Törmä

Department of Computer Science and Engineering,
Aalto University, School of Science, Finland

firstname.lastname@aalto.fi

Abstract. Smart environments require collaboration of multi-platform
sensors operated by multiple parties. Proprietary event processing solu-
tions lack interoperation flexibility, leading to overlapping functions that
can waste hardware and communication resources. Our goal is to show
the applicability of standard RDF and SPARQL – including SPARQL
1.1 Update – for complex event processing tasks. If found feasible, event
processing would enjoy the benefits of semantic web technologies: cross-
domain interoperability, flexible representation and query capabilities,
interrelating disjoint vocabularies, reasoning over event content, and en-
riching events with linked data. To enable event processing with standard
RDF/SPARQL we have created Instans, a high-performance Rete-based
platform for continuous execution of interconnected SPARQL queries.

Keywords: Rete, SPARQL, RDF, Complex event processing

1 Introduction

Complex event processing is currently more dominated by proprietary systems
and vertical products than open technologies. In the future, however, internet-
connected people and things moving between smart spaces in smart cities will
create a huge volume of events in a multi-actor, multi-platform environment.

Semantic web technologies enable flexible representation of events in RDF
and advanced specification of event patterns with SPARQL. They provide possi-
bilities to reason about event content and to enrich events with linked open data
available in the web. Semantic web standards have clear potential to improve
the interoperability and o↵er new capabilities in complex event processing.

A major event processing application can hardly be created out of a single
SPARQL query. The INSERT operation in SPARQL 1.1 Update introduced a
critical new property: By inserting data into a graph, collaborating SPARQL
queries can store intermediate results and communicate with each other. On an
environment supporting simultaneous, continuous evaluation of multiple queries,
SPARQL can be used to create entire event processing applications [5].

After finding no other platform for incremental processing of multiple SPARQL
1.1 queries, we created Instans. Based on the tried and tested Rete-algorithm
[3], Instans shares equivalent parts of queries, caches intermediate matches

Seppo Törmä
Rinne, M. and Nuutila, E. and Törmä, S. (2012). INSTANS: High-Performance
Event Processing with Standard RDF and SPARQL, Poster in Proceedings of
the 11th International Semantic Web Conference, Boston, MA.

and provides results immediately, when all the conditions of a query have been
matched. In addition to being competitive in SPARQL query processing [1], our
studies show qualitative and quantitative benefits compared to SPARQL-based
systems using repeated execution of queries over windows on event streams [5].

Here we extend the discussion in [6] by adding further information on the
Instans implementation of continuous incremental SPARQL query processing.

2 INSTANS Event Processing Platform

Fig. 1: Instans Structure

Instans1 [5] is an incremental engine for near-real-time processing of com-
plex, layered, heterogeneous events. Based on the Rete-algorithm [3], Instans
performs continuous evaluation of incoming RDF data against multiple SPARQL
queries. Intermediate results are stored into a �-node network. When all the con-
ditions of a query are matched, the result is instantly available.

The structure of Instans is illustrated in Fig. 1. The system consists of the
Rete engine and the input and output connectors, which can interface with the
network, triple stores, files or other processes. The Rete engine has four compo-
nents: 1. Rete network, 2. ↵-matcher, 3. Rule instance queue, 4. Instance execu-
tor. The ↵-matcher and the Rete network are capable of finding all SPARQL rule
conditions satisfying the current set of triples. During runtime the ↵-matcher re-
ceives commands to add and remove triples. The matcher finds the ↵-nodes of
the Rete that match the triples and calls the add or remove methods of those
nodes. The changes propagate through the �-network and eventually fully sat-
isfied rule conditions enter the rule nodes, which add new rule instances (with

1 Incremental eNgine for STANding Sparql, http://cse.aalto.fi/instans/

variable bindings) to the rule instance queue. The instance executor executes the
rule instances, which causes add and remove triple commands to be fed into the
output connectors. The rule instance execution also feeds add and remove triple
commands to the ↵-matcher, resulting in new rule instances. Instans operation
over an example query is illustrated in Fig. 2. The query selects events occurring
between 10 and 11 am. The asynchronous nature of Instansmeans that all input

!1

Y1

"1: ! a event:event

 ?event

"2: ! event:time !

Y2

 ?event, ?time

"3: ! tl:at !

Y3

 ?time, ?daytime

!2

 ?event

 ?event

!3

 ?event, ?time

 ?event, ?time

filter1

 ?event, ?daytime

select1

 ?event

Query:'

'

SELECT'?event'

WHERE'{'

''?event'a'event:Event';'

'''''''''''''event:7me'?7me'.'

''?7me'tl:at'?d<m'.'

''FILTER'('hours(?day7me)'='10')''}'

1'

2'

3'

4'

5'

6'

7'

8'

:e1'

:e1'_:b1'

Drop'_:b1'

:e1'10:05'

Process'flow:'

'

①  Each'condi7on'corresponds'to'an'αZnode.'α1'matches'

with'sample'input'“:e1%a%event:Event”.'
②  '“:e1”%propagates'to'β2'and'is'stored'there.'
③  'α2'matches'with'“:e1%event:,me%_:b1”,'where'“_:b1”'

is'a'blank'node.'Input'from'β2'matches'with'“?event”'
in'Y2.'

④  '“:e1”'and'“_:b1”'propagate'un7l'β3.'
⑤  'α3'matches'with'input'“_:b1%tl:at%

“2011410403T10:05:00”ˆˆxsd:dateTime”.'
⑥  In'Y3'“_:b1”'is'equal'in'both'incoming'branches'and'

can'be'eliminated.'

⑦  '“:e1”%and'“2011Z10Z03T10:05:00”ˆˆxsd:dateTime'

reach'filter1.'The'condi7on'“hour%=%10”'is'true.'
⑧  '“:e1”'is'selected'as'a'result.'

Fig. 2: Example of SPARQL query processing in a Rete-net

is processed when it arrives. To manage periodic actions and missing events, the
concept of timed events is introduced [7]. When a new timer is started, an actor

is used to schedule wakeup, at which time a predicate of the timer is changed. A

SPARQL query matching such a triple reacts to the change and carries out the
defined actions. No extensions to SPARQL are needed to support timed events.

Performance of Instans in terms of notification delay was compared to C-
SPARQL [2] using an example application described in [5]. Instans yielded
average notification delays of 12 ms on a 2.26 GHz Intel Core 2 Duo Mac. In C-
SPARQL average query processing delay varied between 12 - 253 ms for window
sizes of 5-60 events, respectively, resulting in the window repetition rate being
the dominant component of the notification delay for any window repetition
rate longer than a second. Using repetition rates of 5-60 seconds with 1 event
per second inter-arrival time C-SPARQL notification delay was measured at
1.34-25.90 seconds. Further details are available on the Instans project website.
Comparison with CQELS [4] is waiting for the availability of a generic version.

3 Conclusions

The feasibility of the central paradigm of Instans – continuous incremental
matching of multiple SPARQL queries supporting inter-query communication –
has so far been supported by empirical tests. When complemented with support
for timed events, we have found no showstopper problems which would render
the approach unusable for any complex event processing task.

The performance of Instans is higher compared to systems based on re-
peated execution of queries at fixed time intervals (or triple counts); they cannot
practically compete with Instans whose notification delays are in the order of
milliseconds. Instans avoids redundant computation: each event is processed
immediately on arrival and only once through the Rete network, network struc-
tures are shared across similar queries, and intermediate results are memorized.

References

1. Abdullah, H., Rinne, M., Törmä, S., Nuutila, E.: E�cient matching of SPARQL
subscriptions using Rete. In: Proceedings of the 27th Symposium On Applied Com-
puting (Mar 2012)

2. Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment
for C-SPARQL queries. In: Proceedings of the 13th International Conference on
Extending Database Technology - EDBT ’10. p. 441. Lausanne, Switzerland (2010)

3. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence 19(1), 17–37 (Sep 1982)

4. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive
approach for unified processing of linked streams and linked data. In: ISWC’11. pp.
370–388. Springer-Verlag Berlin (Oct 2011)

5. Rinne, M., Abdullah, H., Törmä, S., Nuutila, E.: Processing Heterogeneous RDF
Event Streams with Standing SPARQL Update Rules. In: ODBASE 2012 (to ap-
pear). Roma, Italy (Sept 2012)

6. Rinne, M.: DC Short Paper: SPARQL Update for Complex Event Processing (to
appear). In: ISWC. Springer-Verlag, Boston, MA (2012)

7. Rinne, M., Törmä, S., Nuutila, E.: SPARQL-Based Applications for RDF-Encoded
Sensor Data. In: 5th International Workshop on Semantic Sensor Networks (2012)

