Design and Performance Trade-offs in Parallelized RF SDR Architecture

Sami Kiminki
Vesa Hirvisalo
Aalto University
Computer Science and Eng.

Ville Saari1
Jussi Ryynänen
Aalto University
Micro- and Nanosciences

Aarno Pärssinen2
Antti Immonen2
Tommi Zetterman
Nokia Research Center

1currently with EPCOS Nordic
2currently with Renesas Mobile Europe
Outline

- Parallel RF SDR platform for LTE and WLAN (UE)
- Holistic RF platform design
 - effect on RX and TX front-end filters
- Multi-radio opportunities
 - we show system-level data throughput opportunities by RF resource sharing (simulation results)
Figure: Archetype of a parallel multi-standard RF transceiver. The number of RX and TX pipes may be varied.
In-device RF Interference

- We analyse how the RX noise floor is accumulated from different sources
 - receiver noise figure
 - TX signal spilling to RX frequencies due to TX non-linearities
 - TX signal transferred to RX noise due to RX non-linearities
- By setting the allowed desensitization threshold, we can determine RX and TX filter requirements
- Focus on a difficult case
 - WLAN 2.4-GHz (2400–2483.5 MHz)
 - LTE Band 7 (TX: 2500–2570 MHz, RX: 2620–2690 MHz)
RX Filter Requirements

![Graph](image)

Figure: TX blocker attenuation requirement vs. IIP3 of the receiver to achieve 1 dB sensitivity loss
TX Filter Requirements

Figure: TX stopband attenuation requirement for LTE band 7 for sensitivity losses of 1 dB and 3 dB in 2.4-GHz WLAN receiver
Multi-radio Opportunities

- Non-dedicated RF resources
- Two approaches for sharing
 - more performance in the average case (high-end)
 - less hardware for same functionality (low-end)
- Sharing requires favourable conditions, *e.g.*, discontinuous modes in use
 - high-end approach is currently more feasible
RF Resource Scheduling

- The fundamental idea
 - when one radio does not need full HW capabilities, use spare resources to boost another radio
 - all radios maxed out is not the common case

- Some techniques
 - semi-static scheduling: SISO vs MIMO
 - dynamic scheduling: fine-grain traffic shaping \(i.e. \), “TDM of chip resources”
LTE and WLAN on Shared Resources

- Assume discontinuous modes
 - LTE: DRX
 - WLAN: powersave

- The idea
 - LTE reserves the resources first
 - WLAN uses what is left
 - PS-Poll enables fine-grained traffic shaping for RX

- In experiments, we assume
 - bandwidths are 20 MHz (≈ 150 Mbps)
 - device has control on SISO vs MIMO
 - MCS & RI feedback
Figure: Performance estimation for 2 shared receivers
LTE and WLAN: Performance Estimation (2/2)

Figure: Performance estimation for 3 shared receivers
Conclusions

- RF systems must be designed as a whole, not only per-protocol
 - e.g., additional filter requirements
- Parallel SDR approach brings new opportunities
 - Resource sharing for better system-level throughputs
 - Is there even a fundamental reason for dedicated RF pipes?
 - Cognitive radio connection:
 Don’t share only the spectrum, share the resources too
- Resource sharing calls for further protocol work
 - We want better flexibility and predictability
 - ongoing in-device coexistence work helps in this
- Ultimately, we’d like to see general-purpose RF platforms
 - think CPUs, GPGPUs, FPGAs, …
Bonus Slides
Resource Schedule Example

Figure: A resource schedule for LTE and WLAN on 2 RX + 2 TX platform. LTE allocates resources with higher priority.
Effect of Desensitization

Relation of desensitization and range loss

Visualization for 1 dB and 3 dB desensitization

Figure: Desensitization as range loss in free space
WLAN Frame Scheduling

<table>
<thead>
<tr>
<th>RX</th>
<th>TX</th>
<th>Resource allocation block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DATA</td>
<td></td>
</tr>
<tr>
<td>PS-Poll</td>
<td>ACK</td>
<td>Wait until free to send</td>
</tr>
</tbody>
</table>

Defer sending PS-Poll here because of allocation gap
Multi-radio Resource Schedule Example

- External PNG slides