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Abstract
The common approach for virtualization is to treat the op-
erating system as the basic unit. This gives the benefit of
transparency, but is a heavyweight approach. We have im-
plemented a radically different approach: virtualize based on
application requirements and include only necessary compo-
nents, e.g. networking domains. The virtual machine moni-
tor is provided by a standard unmodified operating system.

As opposed to implementing a new operating system, we
have modified NetBSD and show that an existing Unix-style
OS can be virtualized and componentized non-intrusively
with relative ease; our changes are a part of the upstream
source tree. We support file systems, networking, and a
selection of drivers. Furthermore, we are able to use standard
NetBSD binary kernel modules under virtualization.

The bootstrap of a new virtual kernel takes milliseconds
in the typical case. Resource consumption depends on the
code base being virtualized and for NetBSD an untuned base
virtual image uses 300kB of memory and e.g. a fully virtual-
ized TCP/IP stack instance total is 500kB. This means scal-
ability to thousands of units on commodity server hardware.
Performance as compared to a regular kernel depends on the
workload and ranges from superior to similar to worse.

Categories and Subject Descriptors D.2.13 [Reusable
Software]: Reusable libs; D.4.5 [Reliability]: Fault-tolerance;
D.4.7 [Organization and Design]: Interactive systems

General Terms Design, Measurement, Performance

Keywords Virtualization, Lightweight, Kernel service

1. Introduction
Virtualization can be used to provide multiple instances of
operating systems on a single unit of hardware. This is useful
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for example for fine tuning each instance for an individual
application, providing sandboxes where users can be given
administrator privileges, and kernel code development.

Virtualization is very widely used in the real world [1,
2, 9]. The likely reason for its success is the ability to
virtualize operating systems which were in use already. The
resulting extended and virtualized environment looks and
feels similar to a non-virtual one. In case the entire entire
operating system is virtualized, there is no difference to a
non-virtual one from a practical standpoint.

However, full virtualization does also virtualize the as-
pects of the operating system that targeted cases are not in-
terested in. For example, an application requiring TCP/IP
stack virtualization for simulating a massive routed network
with thousands of virtual nodes is not interested in file sys-
tem support or most likely even the tty driver.

Our approach is the opposite of full virtualization: we in-
clude only what is the bare necessity for our target system
by breaking the kernel into four independent coarse-grained
components: base kernel, networking, file systems, and de-
vice drivers. Upon these basic components various config-
urations can be built, including applications which use the
virtualized components and drivers. This approach comple-
ments existing virtualization technologies instead of com-
peting with them.

We call our model Runnable Userspace Meta Programs,
or rump for short. The name is due to the fact that we use
userspace processes for virtualization containers. A kernel
service running in userspace is called a rump kernel.

Our goal not to solve all problems or provide a gen-
eral solution. Our goal is provide virtualization of ker-
nel services with minimal overhead. An example usecase
is consumer embedded devices. Manufacturers desire a
lightweight method for segregating users from system ser-
vices. For example, the TCP/IP networking service used
by user-installed applications should be different from the
TCP/IP networking service used by the system internally.
This enables better control of system component behavior.
Since resources are at a premium in embedded systems, full
virtualization is out of the question.
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Rump does not require a special virtual machine moni-
tor. This means that we do not have to run another layer of
processes, threads, context switching, synchronization prim-
itives, etc. on top of the process facility in userspace, but
rather use functionality readily supplied by the host operat-
ing system. After all, the purpose of a process is to provide
the illusion of only one application running on the system –
it is a virtualization container waiting to happen. Leaving out
extra layers also allows us to avoid the slowdown of virtual
operating systems running on top of operating systems [21].

The idea of running kernel code directly in a userspace
process is not new. We have used it successfully ourselves
for file systems [20]. The work in this paper explores the
concept much further: it expands the idea to networking and
device drivers, offers a system call interface to the rump ker-
nel with 111 supported syscalls and supports RPC for an
“overlay virtual OS” consisting of multiple processes. Also,
to the best of our knowledge, rump is the only paravirtual-
ization facility which can use binary kernel modules from
the OS being virtualized. Finally, we formulate and provide
OS requirements for rump virtualization.

We support two classes of device drivers: so-called
pseudo devices, which are not backed by hardware, and USB
devices. Support for the latter is in the beginning stages, but
we can already access file systems on USB sticks by running
the kernel driver stack in userspace (cf. Figure 1).

The implementation is done on an existing open source
Unix-based operating system, NetBSD. We aim for a prag-
matic approach and our goal is a working and usable oper-
ating system both in a virtualized and non-virtualized con-
text. After its initial import, rump has been developed in the
NetBSD main source tree for over 2 years now. This stands
as a testament to the fact that the approach is applicable in a
real-world operating system.

The rest of the paper is structured as follows. Section 2
takes a closer look at virtualization technologies available
today and defines our approach. Section 3 explains the im-
plementation in detail. Section 4 evaluates the technology
verbally and Section 5 provides measurement data. In Sec-
tion 6 we formulate the requirements for an OS to be sub-
jected to rump virtualization and Section 7 presents applica-
tions. Finally, Section 8 provides concluding remarks.

2. Virtualization
We use the following terminology in the discussion: a vir-
tual machine monitor is the software layer which provides
virtualization. The host operating system or host is the en-
tity running the virtual machine monitor. The guest is the
virtualized operating system.

There are three main types of operating system virtual-
ization available today:

• instruction set virtualization [2, 12]: the virtual ma-
chine monitor interprets the instructions made by the
guest and translates them to a form suitable for the host.
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Figure 1. Runnable Userspace Meta Programs Architec-
ture. The application and kernel services are running inside
a process provided by the host operating system.

This can be either runtime translation or pre-translation
and for the full instruction set or just the privileged CPU
instructions.

• hardware abstraction layer virtualization [1, 4, 9, 27]:
the virtual machine monitor provides an alternate view
of the hardware for the operating system. This alternate
hardware view may also be invisible to the guest operat-
ing and hardware features cause certain CPU instructions
to be redirected to the virtual machine monitor.

• OS level namespace virtualization [19, 29]: the host
operating system is the virtual machine monitor. It par-
titions itself into multiple disjoint namespaces and gives
applications in a partition the impression they are the
only applications running on the operating system.

An additional noteworthy technique is API level OS vir-
tualization. The a well-known example is the Wine project,
which aims to emulate Windows APIs and allows Windows
applications to work on non-Windows hosts. This, however,
does not virtualize the operating system itself.

Next we outline our approach, compare it to other virtu-
alization technologies, and analyze the implications of our
choices.

2.1 Approach
As mentioned in the introduction, our approach is to take the
kernel and run service components in a userspace process.
We optimize for the case where the whole virtualized image
is in a single process, but we also support RPC models
where virtualization is spread into multiple processes on
the same host or distributed amongst multiple hosts. RPC
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Full OS Access Host Kernel Std. guest Std. App Std. HW MI crashproof code
Xen yes guest modified no yes yes no yes native
qemu yes guest std. yes yes yes no yes translated
KVM yes guest support yes yes no no yes native
UML yes guest std. no yes yes no yes native
jails no both support n/a yes yes yes no native
rump no both std. n/a no yes yes yes native

Table 1. Comparison of popular virtualization technologies. We use specific names rather than generic names, because we
believe them to be better established. The meanings of the fields are further explained in Section 2.2.

allows e.g. to use ifconfig and raidctl to configure the
services in a rump kernel without having to include the same
configuration functionality in every rump application.

2.2 Virtualization technology comparison
We briefly compare the key points of commonly used virtu-
alization technologies against each other in Table 1. This is
to put us into context. A more complete survey can be found
elsewhere [24]. It should be noted that the technologies we
include are listed using proper names. For example, another
way to read “Xen” is “paravirtualization”. The meanings of
the fields are as follows:

• Full OS: does the virtualization technology virtualize
every component in the OS stack.

• Access: where is the virtualized operating system di-
rectly accessible from for e.g. making system calls.

• Host kernel: does the virtualization function on a stan-
dard host kernel (“std.”), does it require driver support
(“support”), or does it depend on a completely different
type of host kernel (“modified”).

• Std. guest: does the technology require a specialized
guest or will a normal binary distribution work.

• Std. App: do unvirtualized applications work directly.
• Std. HW: does the technology run on normal hardware

or does it require special support.
• MI: is the implementation machine-independent, i.e.

does it work with any architecture or is porting required.
• crashproof: is the host safe from crashing due to a prob-

lem in the virtualized portion.
• code: does the code execute directly on the CPU or does

it require translation.

2.3 Analysis of approach
The main advantages of the rump approach are as follows:

• minimal resource consumption: every virtual kernel
uses only what it needs

• works on a stock host OS: no specially modified host
operating system is required, making the facility easy to
take into use without prior preparation.

• architecture-independent: rump does not require low-
level architecture-specific code and works on e.g. MIPS,
ARM and PowerPC in addition to x86. Currently we have
under ten lines of architecture specific code for machine
architectures which support the kernel module ABI.

• virtual kernels are first class citizens on the host: vir-
tual kernel access from the host OS is possible directly
without having to go through a process running on the
virtual kernel. This makes e.g. regression testing the ker-
nel simpler – a coredump is an application coredump.

• minimal setup: setup of a virtual process kernel requires
only the setup of the component it uses. It does not, for
example, require creating a root file system and installing
a full setup of userland utilities, if just TCP/IP virtualiza-
tion is desired.
Even if multiple different VM setups are available as
pre-configured images, their management becomes hard
at some point and keeping them all up-to-date can be
a burden and security risk [15]. Since rump kernels are
a first-class citizen of the host operating system, it is
enough to keep one system up-to-date.

We drew ideas from the Exokernel [18] in that we give the
application control of how to modify and optimize the ker-
nel, Alpine [13] and Mach [16] in that we run existing kernel
code in a userspace program and Denali [27] for lightweight
virtualization. What sets virtual process kernels apart is that
they are in fact an amalgamation of the qualities mentioned:
an application-customizable and lightweight virtual kernel
mechanism which uses existing operating system code and
can use a stock operating system for hosting. We do not re-
quire a specially written operating system.

On the other hand, our approach is similar to kernel
namespace partitioning, such as FreeBSD jails [19], Linux
OpenVZ or the Featherweight Virtual Machine [29]. They
all function using host operating system resources, but par-
tition the system in a fashion so that processes belonging
to a different partition cannot see or directly influence each
other. However, they all operate on one copy of the kernel
and its functionality. This does not provide kernel isolation,
neither does it provide the ability to use multiple differing
copies of the same service.
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Figure 2. rump component breakdown: The source modules are classified into functional units and the lines of code for
each are listed (whitespace or comments not counted). Driver examples such as TCP/IP and SCSI are also included.

3. Implementation
Rump functions by running target OS kernel code in a pro-
cess on the host OS. As with all application processes, the
code is running with user level privileges. The host OS con-
trols access to physical resources such as memory, network-
ing, devices and mass media. The rump kernel can be run
with or without superuser privileges, making fine grained
control of resources possible.

The rump kernel explicitly accesses the virtual machine
monitor (i.e. host OS) through a special set of interfaces,
known as ”rumpuser”. In Figure 1 this is depicted as ”Host
OS Interface”. This component provides e.g. device access,
the time of day, and synchronization primitives.

3.1 Partitioning the kernel
We partition the kernel into coarse-grained components:
host OS interface, rump base, dev, vfs and net. The reason is
to minimize the memory overhead of a virtual instance. We
provide the memory cost of some configurations in Figure 3.
Being able to cut unwanted components saves resources es-
pecially when considering thousands of units.

For example, a rump kernel supporting a USB wireless
Ethernet stick has these drivers and components: dev usbrum
(the wireless driver itself), dev net80211 (generic wire-
less card support), dev usb (USB stack), dev usbhc (rump
USB host controller), dev (basic device support), net netinet
(TCP/IP), net net (interface support), net (basic network-
ing and sockets support), vfs (file systems support, required
since the driver loads firmware from disk), crypto (generic
crypto algorithm support) and rumpkern plus rumpuser.

We have two methods of providing functionality in the
rump kernel: we can extract it out of the kernel sources,
meaning we simply use the source module as such, or we
can implement it, meaning that we do a reimplementation
for userspace. We work on a source module granularity
level. This approach is simple and showably works. Figure 2
provides an overview of each component, how much of
extracted code there is and what we had to reimplement.

Along the way we ran into five files which we could
not extract as such either because they violated component
boundaries or because parts of the module accessed hard-
ware. In these cases we split code to another module. While
code moving is generally frowned upon due to it making
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Figure 3. Memory usage: The memory usage of rump ap-
plications after startup of n instances.

changes hard to track, we feel it was an acceptable trade-
off. At least the author expected partitioning an operating
system with 40 years of monolithic Unix background to be
considerably harder, so the ease was a surprising result.

The rule of thumb is to extract as much as possible for
the features we desire. Broadly speaking, there are three
categories when extraction is not possible.

1. code which does not exist in the kernel: this means
drivers specific for rump. Examples are the rumpuser
host interface, tap interface and syscall RPC support.

2. code dealing with concepts not supported in userspace:
the virtual memory subsystem is a premium example. We
do not support page faults or secondary memory in rump.
Notably though, these observations hugely simplify the
rump vm.
Nevertheless, it should be noted that parts of the vm deal
with data management, e.g. manage pages associated
with vnodes. These parts of the vm we want to extract.

3. bypassed layers: we leave e.g. thread scheduling and
synchronization to the host. Any kernel code implement-
ing bypassed layers is not applicable for rump.

3.2 Privileged instructions
Some kernel code executes CPU instructions which are
available only in privileged mode. A common example is
code dealing with the MMU. Executing privileged instruc-
tions while the CPU is in non-privileged mode should cause
a trap and the host OS or VMM to take control. However, in
some cases [25] instructions required for virtualization may
pass silently through without a processor trap.

Virtualization technologies solve the problem simply by
not executing privileged instructions on the CPU. For exam-
ple, Xen uses hypervisor calls in user domains, UML does
not use them in the usermode machine dependent code, and
qemu handles such instructions in the emulator.

If we are to run unmodified kernel modules in userspace,
we do not have the same freedom as any of the other
technologies mentioned above. However, in practice ker-
nel drivers do not use privileged instructions because they
are found only in the architecture specific parts of the ker-
nel. Therefore, we can solve the problem by defining that it
does not exist in our model – if there are some it is a fail-
ure in modifying the OS to support rump. This subject is
revisited in Section 6, where we discuss operating system
requirement for rump style virtualization.

3.3 Threads and Processes
In full OS virtualization the virtual kernel takes care of
thread scheduling. In the rump model we delegate this re-
sponsibility to the host.

We map kernel thread creation and the synchroniza-
tion primitives to host the pthread library. This is a sim-
ple interface translation, e.g. kthread_create() calls
pthread_create(). Scheduling and locking are directly
done by the host and can be efficiently handled [21].

We permit applications to create processes in a rump
kernel; e.g. in testing it is helpful to operate on two separate
file descriptor sets. However, the whole process facility is
advisory, and rump does not enforce process boundaries.

When run in a single process there is no protection for
rump kernel memory. We have not found a rump use case
where this is an issue. However, if one is discovered, mul-
tiple host processes and RPC into the rump kernel may be
used. Another option would be to look into single address
space OS protection techniques [6].

3.4 Scheduling
Modern multiprocessor operating systems use a technique
called “per CPU”, which means that there is a local copy
of the data for each CPU. Since the current CPU is the
only one with a reference to the data, a thread running on
it may access the data without locking, provided that CPU
preemption is disabled for the duration of the access. We
must make sure that this property is preserved, or kernel
code written with this assumption will not function properly.

Normally, we think of scheduling as choosing a thread
to run on a CPU. However, host thread scheduling used
by rump selects the running thread for us. Therefore, we
schedule virtual CPUs for threads instead. In both cases
the result is the same: a 1:1 mapping between the currently
executing thread and a CPU.

At every rump kernel entry point we acquire a virtual
CPU from a freelist. When we return to the application or
make a blocking call to the host, we release the CPU and
reacquire one when the call is complete. Now, even if a
thread running in the rump kernel is preempted by the host
thread scheduler, it will hold its locks and CPU reference.
This provides the virtual rump kernel the multiprogramming
illusion and ensures correct operation.
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3.5 Interrupts
An interrupt is an asynchronous condition raised by the
hardware. An operating system’s usual response is to bor-
row the currently executing thread’s context to examine and
examine why the interrupt was caused. Many modern op-
erating systems only acknowledge the hardware in interrupt
context and defer any heavy processing to a soft interrupt
which executes from thread context. Interrupt priority lev-
els, ipls, may be used to guard access to data which can be
used from interrupt context. For example, in NetBSD a lock
which might be taken by an interrupt must not be acquired at
an ipl where an interrupt might preempt the running thread
and need to take the lock the preempted thread holds.

We do not have direct hardware access in userspace and
therefore do not get interrupts from the hardware. As was
explained in the section on scheduling, threads running in
the kernel do not get preempted from the CPU. Therefore,
interrupts can always be delivered in thread context on a
free virtual CPU and there is no need implement interrupt
disabling like in the real kernel.

3.6 Requests to the kernel
In a normal scenario an application requests services from
the kernel by doing a system call. This works by marshalling
the arguments to the call in libc and trapping into the kernel.
The kernel examines the system call number to decide how
to retrieve the arguments and service the request.

In rump we have two distinct cases:

1. The rump kernel is in the same address space as the
application, as is the common case. Here a system call
can be relegated to making a function call. Copying data
from and to the user address space is done by memcpy().

2. The rump kernel is in another process, either on the
local system or remote. This case is similar to a regular
kernel. We marshal the arguments and send them over a
socket along with the system call number. We then wait
until the response to our request arrives.
Copying data from and to the calling process must be
handled by explicit requests back to the caller. When the
server starts processing a request, it creates a task thread
and sets the virtual memory context of the thread so that
copy requests are directed to the RPC mechanism. The
caller services the copy requests until the call returns.

For the distributed case service discovery, configuration
and security are currently manually handled. Adding support
for a well-known model is possible [7], but beyond the scope
of this paper.

Rump also supports interfacing directly with the file sys-
tem vnode interface. This is used to implement kernel file
system servers [20]. Additionally, rump exports a class of
interfaces which are useful only to applications with direct
knowledge of rump. An example is creating a virtual process
inside the rump kernel.

All of the three sets of interfaces are autogenerated from
description files. This helps to verify that scheduling (Sec-
tion 3.4) is properly handled at entry points. Since we do
not export the application interface prototypes inside rump,
it even helps in not accidentally making a call which would
attempt to reschedule from inside rump. Furthermore, in the
case of system calls and the vnode interface, the descriptions
are the same as what the interfaces for the regular kernel are
created from. This helps verify that rump interfaces behave
the same as real kernel interfaces.

Rump system calls
Rump system calls have the same semantics and ABI as reg-
ular system calls, e.g. rump_sys_open() will upon success
return a file descriptor for the path being opened; the file
descriptor is a valid handle only in the rump kernel. Specifi-
cally, in case the rump kernel does not support vfs, -1 is re-
turned and errno is set to EOPNOTSUPP. Initially, we required
passing a reference to an integer to which errno would be set,
but this API difference made adapting existing applications
unnecessarily difficult. Now errno is set by rump similarly
to in regular system calls.

Currently the policy for making a regular kernel system
call vs. making a rump system call is entirely up to the ap-
plication. In practice we have found it easy to modify appli-
cations for rump support. Most of the time it is a matter of
changing a few system calls and can be done with cpp, e.g.
#define socket(a,b,c) rump_sys_socket(a,b,c).

3.7 On portability
Portability for a rump kernel means the ability to run a rump
kernel on a non-NetBSD host OS. This is a powerful con-
cept, as it allows running NetBSD kernel code on other op-
erating systems and different versions of NetBSD. An exam-
ple application where this is necessary is the disk encrypter
described in Section 7.1.

Since we run the kernel code in userspace and our inter-
face the host OS interfaces is very limited, is it tempting to
call our solution portable. However, the claim deserves more
dissection. When evaluating the portability of rump, there
are two facets to consider (refer to Figure 1 if necessary):

1. below, i.e. rumpuser: is it possible for the host OS [ver-
sion] to be different from the rump kernel OS

2. above, i.e. application interface: is it possible to make
requests to the rump kernel from another OS [version]

To be portable from below, the rumpuser interface must
be independent of system types and rely only on C99. For
example, the interface must not rely on the time t type
being 32bit or 64bit. Neither must it depend on symbols such
as SOCK STREAM or O RDONLY being universally constant.

Portability from above requires fulfilling the same con-
strains as portability from below. Additionally, it requires a
common understanding of data types between the client and
the rump kernel. Since the client can be on host with differ-
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explicit

namespace: rump

rump_sys() rump_func()

implicit

application_func()

namespace: std

Figure 4. C namespace protection: all kernel symbols are
prefixed with the string “rump” to decrease the risk of ac-
cidental collision. Calls from application namespace must
explicitly include the prefix, while intra-kernel calls do not
need to use the prefixed version.

ent byte order and word size and the interface larger than the
rumpuser interface, the problem is much more difficult.

The issue with portability is not so much with getting the
code to run as it is being able to interface with it. Since con-
temporary open source operating systems provide interfaces
only as C headers, a readily available facility for marshalling
an “on-wire” representation does not exist. It is doable, but
demands a lot of manual labour and is beyond the scope of
our immediate attention.

Although theoretically requiring the rigorous attention
mentioned above, in practice rump is portable to some ex-
tent. Thanks to common history, for example the value of
O RDONLY is the same across at least Linux, BSD and Solaris
systems. In practice it is possible to run rump kernels on for-
eign operating systems and in fact we have used NetBSD
kernel file system code successfully on Linux [20]. It is also
possible to host a rump kernel from a different operating sys-
tem version. In fact, on all the benchmarks presented in this
paper the major version of the host OS did not match the
version of the rump kernel. However, there is no rule for the
general case and a case-by-case study is required to deter-
mine feasibility.

Eventually, our goal is to provide both external and in-
ternal interfaces [11]. Our definition of external in this case
is any system which is not ABI compatible with the rump
kernel. This will preserve efficiency in the native case and
allow interfacing from non-native systems.

3.8 C symbol namespaces
Normally the kernel and process C namespaces are disjoint.
This means that both the kernel and an application can have
and use a common symbol name, for example printf, with-
out a collision occurring. When we run the kernel in a pro-
cess container, we must take care to preserve this property.
Otherwise the kernel version of printf would override the

libc version during linktime and the calls made from inside
the application would be resolved to the kernel symbol. Sin-
gle address space operating systems have solved this [8], but
are general for an arbitrary number of processes and require
a different calling convention. In our case we only have two
namespaces: application and kernel.

We solved the issue by defining all symbols starting with
the prefix “rump” to be private to the rump kernel. We
use the objcopy utility’s rename functionality to prefix the
kernel symbols with “rumpns ”. This puts all kernel symbols
into our private namespace. Now printf will be exported
as rumpns printf, and unresolved symbols will have the
same prefix. Since we do not execute rename on application
binaries, a single program image can contain calls to both
the libc and kernel printf. Prefixes are illustrated in Figure 4.

However, renaming presents a problem. Not all symbols
in an object are from the kernel. Some are a property of
the toolchain. A good example is GLOBAL OFFSET TABLE ,
which is used by position independent code to store the
offsets. Renaming the toolchain-generated symbol causes
linking to fail, since a toolchain expects to find the offset
table where it left it.

We observe that almost all of the GNU toolchain’s sym-
bols are in the namespace “ ”, while the NetBSD kernel
exports very few symbols in that namespace. Hence, we ex-
clude that namespace from the bulk rename. In addition,
we need to maintain a quirk table. Currently, the quirk ta-
ble includes only the global offset table mentioned earlier,
and machine dependent quirks for PARISC and MIPS –
one quirk per architecture. The solution presented here has
worked well in practice and has not required adjustments
since it was put in 10 months ago.

3.9 Shared Libraries vs. Kernel Modules
We support two options in rump: compile kernel code as a
regular userspace shared library, or use a kernel module bi-
nary. The advantage of the latter is that it is readily available
without source code or extra recompilation.

However, there is a disadvantage to using kernel mod-
ules because kernel modules are not compiled as Position
Independent Code (PIC). This means that for every rump
instance a separate copy of the read-only data and the text
segment is loaded. This can mean significant overhead. We
recommend compiling shared (PIC) libraries if source code
is available.

The ability to use binary kernel modules also places re-
strictions on the emulated part of a rump kernel. The applica-
tion binary interface (ABI) of non-extracted implementation
must match the kernel ABI. This poses a problem because
not all machine specific functionality is made up of func-
tion interfaces, but rather a mixture of preprocessor macros
and inline functions. A good example is architecture specific
memory management code. If we are to provide a userspace
implementation for the headers, we must be sure to satisfy
all architectures.
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We support full kernel ABI compatibility currently only
on i386 and x86 64. For the rest of the OS’s architectures,
we provide blanket headers which hide the architecture’s
own headers and can provide a common implementation.
For i386 and x86 64 almost everything is supported by
the machine independent userspace code. The MD portions
reimplement only 6 symbols required by the machine de-
pendent headers.

The final requirement for a kernel module is that it must
conform to the “rumpns” namespace requirements described
earlier in Section 3.8. This can be done directly on the kernel
module binary using objcopy as described earlier and does
not require the source code to be available.

Dynamic loading
Kernel modules can be dynamically loaded to add func-
tionality to a running kernel. The application equivalent is
dlopen() which loads and links a shared library. We can
dynamically load a module compiled as a library to a rump
kernel by calling dlopen on it and executing the module ini-
tialization routine.

3.10 USB device drivers
Rump offers preliminary support for running kernel USB
device drivers in userspace on a NetBSD host. NetBSD
exports a generic USB driver ugen to userspace through /dev
nodes. Through the device nodes we can send and receive
requests to and from the USB hardware.

At the root of each USB bus is a host controller. Due to
there being multiple different types of host controllers, the
NetBSD kernel USB stack defines a set of interfaces which
all host controllers must implement. USB device drivers
use these interfaces (“pipes”) to communicate with the host
controller and ultimately access the hardware.

We implement a rump USB host controller. It directs re-
quests from drivers to the ugen device and reports results.
Since ugen passes almost all requests as-is to the backing de-
vice, there is very little translation to be done. DMA is a non-
issue for two reasons: first, NetBSD uses the bus dma [26]
abstraction for allocation of DMA memory, so we imple-
ment what is suitable for rump. Second, all DMA program-
ming is done by the host controller. In our case “direct”
memory access means read and write to the device node.

USB support is work-in-progress, but we can currently
already mount and access a file system on a USB stick with
both the USB and file system driver stacks in rump. We can
also configure a wireless Ethernet USB device.

4. Evaluation
4.1 Resource control
Since a rump kernel runs purely as a process, it has access
to exactly those resources the host OS gives it access to. In
most cases this means file access. For example, disk based
file systems can be mounted based on access to the disk file

and USB drivers can access hardware depending on access
to the /dev nodes for ugen devices.

Similarly, it is possible to control networking from the
host OS. Even though the rump kernel contains an indepen-
dent networking stack and interface configuration is done
based on permission inside the rump kernel, the host OS can
control outside world access with its own firewall and might
for example allow only one IP address to transmit and re-
ceive data from the network.

4.2 Security and compromise analysis
One of the main applications of OS virtualization is to pro-
vide isolation and enhance security. Whether actual benefit
is provided depends largely on the threat model and the par-
titioning of virtualized systems.

Let us assume the likely case that the kernel has faulty
code in a file system driver [28] and the OS can be com-
promised by making it access a hostile disk image such as
one on a USB device. When the kernel is compromised, in
the traditional Unix model all applications running in it are
compromised. It is not practical to boot an entire virtual op-
erating system every time a file on a USB stick is to be ac-
cessed. Running a rump kernel every time is practical. In
case of rump kernel compromise, direct damage is isolated
to the hosting process instead of to the entire system [20].

Given that in the typical scenario there is one rump kernel
per application and that the rump kernel is in fact an integral
part of the application, compromise of the rump kernel from
the application itself is not an issue.

A rump kernel has the same privileges as a process, so
from the perspective of the host system its compromise is
the same as the compromise of any other application. In case
rogue applications are a concern, on most operating systems
process access can be further limited by facilities such as
chroot and jails [19].

Therefore, rump virtualization provides good security
benefits for the tasks it is meant for. But like everything
else, it depends on the security of the layers it is running on.

4.3 Micro tuning
Since our virtual machine is a part of the application, it is
possible to highly tune each kernel for each application. This
somewhat resembles the Exokernel motivation [14], but the
main difference is that we are working with a preexisting
operating system and preexisting services which we want to
only microtune with little or no code modification.

As a very simple example, we mention setting the clock
interrupt frequency. A service which does not need the
clock, such as most file systems, can set the clock inter-
rupt frequency very low or even completely disable it. Con-
versely, an application which requires high-resolution time-
outs can set the clock frequency extremely high. When deal-
ing with a high number of rump kernels this is very useful.
For example, in our routing cluster, which is used to for
evaluation in Section 5, activating 256 threads 1000 times a
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Figure 5. Packet RTT. Send an UDP packet to a peer
through n nodes and wait for a response. The left hand
figure is for a prerunning cluster, while the right hand figure
include time to start the cluster.

second for a clock interrupt consumes close to 10% total sys-
tem CPU. Setting the value as low as 5Hz is completely ac-
ceptable, since in our example only the TCP timer depends
on the clock frequency. This brings idle CPU consumption
down to under 0.05% of total system CPU.

A potential idea is to use profile guided optimization [5]
for compiling the rump kernel. This way each application
can use a specially optimized version of kernel services.

4.4 Maintainability
The maintainability of a system implemented partially in
parallel with a fast-moving target such as an open source
OS kernel is always suspect. Our file system paper [20] dis-
cussed maintainability. In summary, under 0.2% of kernel
commits caused build breakage due to mishandling of fea-
tures duplicated in rump.

5. Measurements
Almost all the measurements have been done on a 2GHz
Core2Duo with 2GB of RAM. When two machines were
needed, the peer was a 1.6GHz Pentium 4 over a 100MBit
LAN. The rump kernel uses NetBSD 5.99.7, the Core2Duo
NetBSD 5 and the Pentium 4 is running NetBSD 4.

In cases where external network access was required, the
rump kernel interfaced the network through a tap interface
which was bridged to the LAN interface. When simulating
a purely internal network inside a single machine, a virtual
interface using process shared memory as the bus was used.

5.1 Virtual network cluster
High scalability makes rump a promising option for large-
scale networking testing [17] by allowing physical hosts to
have multiple isolated networking stacks and routing tables.

To test the potential, we form a routed virtual network
using the shared memory interface and measure the time it
takes for a UDP packet to travel from one peer to another
and back. The results as a function of the number of hops
displayed in Figure 5. One hop corresponds to one virtual
process kernel and one networking stack instance. Scaling
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Figure 6. ping: RTT for ping with various technologies

is almost linear. We suspect the slight exponential nature is
due to host OS scheduling artifacts.

The tested cluster size we tested is limited by the max-
imum number of hops that the IP time-to-live (TTL) field
supports (255). The recommended default from RFC1340 is
64 hops, so we had to adjust the virtual kernel to default each
packet to 255 hops at startup.

In addition to be highly scalable, rump kernels feature al-
most instantaneous startup. Using other virtualization tech-
nologies startup can take anywhere from seconds to minutes.
As evidence we offer the fact that booting our standard qemu
configuration used some kernel development purposes takes
over 10 seconds to get to the stage to be able to respond
to icmp ping and even longer to get applications running.
Rump reaches the same stage in under 0.01 seconds, mak-
ing it well over 1000 times faster for startup. In addition to
cluster reconfiguration, fast bootstrap is important in situa-
tions where restarts are common, such as code development.

Figure 5 shows how long it takes to bootstrap our cluster
we used in the previous test. To make sure we are opera-
tional, we include the time until the first packet roundtrip
has been completed.

5.2 ping
We measured the latency of ping against common virtualiza-
tion technologies. Since ping is handled by the kernel, there
is no process scheduling involved.

The results are presented in Figure 6. Rump performs sec-
ond best in the test after UserMode Linux. However, since
the is no networking rump for Linux and no usermode port
of NetBSD, the figures are not directly comparable – Linux
might respond to ping better than NetBSD. All virtualiza-
tion technologies perform significantly worse than the native
case. This is because pinging a local address allows the sys-
tem to route the packet through the loopback address. Since
a virtualize OS does not have a local address configured on
the host, the packet must be transmitted through the bridge
interface and to the virtual kernel.

5.3 Web servers
A web server performance test measures two things: 1) how
easy is it to adapt a real world application to use rump sys-
tem calls 2) how well does rump perform in a real applica-
tion. We tested thttpd and apache. Both were easy to adapt
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and Apache provides a separate OS portability layer (“apr”)
which made it easy to locate all the network access points.

We used ApacheBench to measure the total time for
10000 requests to the root document of the web server.
ApacheBench is always running on the native kernel TCP/IP
stack, while the web server runs both against the host stack
and the virtual stack. The results are displayed in Figure 7.

Apache provides several worker models to choose from,
including a fork model and a threaded model. To make a
similar comparison for both thttpd and Apache, we used the
fork model with a single server.

Rump TCP/IP is slower. Using thttpd with concurrency
of 4 and above, the difference is about 0.1s in total time.
This translates to 0.01ms (3%) difference per request. We
attribute this to the fact that in addition to working the
normal interface path, the virtual process kernel must deliver
packets through the tap and bridge drivers. This is an issue
inherent to Ethernet access from userspace. Apache does not
perform nearly as well. We did not pinpoint the issue.

As an interesting observation, running ApacheBench put
10000 connections in TIME WAIT on the server. This behav-
ior is required by the active close of TCP state machine.
Having 10k connections waiting forced us to wait between
for the timeout between running the tests for the in-kernel
networking stack. In contrast, we could kill the process host-
ing the rump kernel networking stack and start out with a
new IP and a clean state in a fraction of a second. While na-
tive TCP/IP was faster than rump, executing the benchmarks
on it took over 10 times as long in wall time.

5.4 System call speed
A common way to measure system call overhead is to exe-
cute a null system call. We wanted a call which has to copy
data both from and to the user and settled on a call which
looks up a value from the kernel management information
base and returns it. The results are presented in Figure 8.
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Figure 8. Syscall time: time it to takes to perform
10,000,000 simple system calls. The “unix” case depicts
doing a call to a local machine kernel of a UNIX-domain
socket and “tcp” does the same over host TCP/IP to a kernel
running on a remote machine.

The results are expected. Making a function call is
cheaper than doing a system call trap, so rumps perform
better than regular applications. The “unix” and “tcp” mea-
surements are included only as a proof-of-concept, as the
remote system call mechanism is currently extremely sim-
plistic. We have no doubt it could be dramatically improved
especially in the local case by using standard microkernel
techniques [3, 22]. However, doing so would mean a non-
standard host OS requirement.

6. OS requirements for rump virtualization
Next we list and explain the OS requirements for implement-
ing rump style virtualization.

• clean source module boundaries: we do not include all
modules present in a standard kernel. If source modules
have erratic interdependencies, it is difficult to extract a
clean subset.

• easy access to basic routines: since we rename all sym-
bols in kernel code, no symbols get linked against libc.
This means that basic routines such as memset() and
in_cksum() must be provided in rump code. We could
provide MI implementations, but that would unneces-
sarily slow things down over the optimized versions. In
NetBSD all the basic functionality is included in a library
called libkern. Simply including this library in rumpkern
addresses this issue.

• autogenerated interfaces: as mentioned in Section 3.6,
the fact that NetBSD autogenerates system call tables
and vnode interfaces from description files made it much
simpler to wrap them with the necessary scheduler calls.
Since we modified the generator scripts to produce the
rump versions as well, they stay automatically in sync
with the masters.

• no static initializers: static initializers expose imple-
mentation. For example, we map the kernel mutex type
kmutex_t to a pthread mutex. If the kernel mutex facility
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supported static initializers, a mutex would be initialized
to use the kernel implementation and not our pthread-
mapped implementation. Checking for lock initialization
along the use-path would add unnecessary complexity
and require further synchronization when two threads
lock the same mutex for the first time simultaneously.

• function interfaces: many operating systems contain in-
terfaces which are half implemented as inline functions
or macros. For example, the interface for fetching the
current running thread typically contains machine depen-
dent code: on x86 it is fetched from a constant address
behind another segment register while on UltraSPARC it
is fetched from an offset in kernel VA. Sometimes, such
as on x86, it is possible to satisfy the exposed implemen-
tation in userspace. Other times, such as on UltraSPARC,
it is extremely complicated at best. And in any case, it re-
quires writing machine dependent code.
Initially when we wanted to use the kernel ABI in
userspace to make kernel modules work, we discovered
that on the i386 and x86 64 ports interfaces which his-
torically were macros or inlines had been converted to
function calls for kernels supporting loadable modules.
This simplified our work, since we could for example rel-
egate the management of the current thread information
to pthread TLS instead of using segment registers.

We discover that apart from normal good programming
practices and module separation on functionality, the ker-
nel structural requirements for a rump virtualization are the
same as those for a modularized kernel with a stable ABI.

7. Applications
In this section we present example users of rump style kernel
service virtualization and compare to other solutions. The
comparison summary is provided in Table 2.

7.1 Encrypted Install Images
The cryptographic disk driver (cgd) [10] provides block de-
vice encryption. The cgd driver is configured on top of a
storage device and it provides an encrypted view of the un-
derlying device. The common use case is mobile and remov-
able storage, where a file system is created onto an encrypted
view, mounted, and written to. Since cgd supports password-
based PKCS#5 PBKDF2 key generation, it is possible to
protect this encrypted view behind a passphrase.

Encrypted install images allow to distribute media with
sensitive material such as proprietary applications, but only
let parties who know the passphrase to access the sensitive
part. Since the NetBSD build process is required to work as
an unprivileged user on any operating system [23], relying
on cgd in the build host kernel is not an option for supporting
encrypted install images.

We have written a proof-of-concept application for en-
crypting a disk image. It configures storage into a rump ker-

Approach Weaknesses

OS Virtualization • installation and maintenance
• resource waste
• bootstrap cost
• slow or special VMM

Application • code maintenance
• not transparent

Host Kernel • may require privileges
• does not virtualize

Table 2. Summary of weaknesses using other ap-
proaches for presented applications

nel and a cgd device on top of it. The desired data, which
can be a file system image, is then written to the cgd device
node and hits the backend storage encrypted. The kernel cgd
driver does not yet support in-place re-keying, but the author
of cgd has expressed interest in adding support. This would
simplify our application use in the future even more.

Application-level solutions such as pgp+tar could be used
for the same effect, but they add extra steps to when the data
is to be used: the encrypted package must be unencrypted
and unpacked before it can be used. By using cgd the on-
disk data can later be transparently accessed in NetBSD.

7.2 Self-Contained NFS Service
An NFS service is typically provided by an in-kernel file
server (nfsd) and a userspace service for loading export lists
and processing mount requests (mountd). Since mountd uses
a SUN RPC protocol, a service binding RPC programs to
network addresses is also required (rpcbind).

In environments such as labs for OS development it is
desirable to let users provide their own NFS services from a
centrally administrated server machine. This enables people
to provide their own NFS root file systems for machines they
are developing. Since nfsd runs in the kernel, it is impossible
to isolate these exports from each other. Furthermore, the
approach does not work for unprivileged users, since they
must be able to make privileged system calls.

One way to solve this is by giving each user a virtual op-
erating system and root inside it. This approach is overkill. It
adds the administrative tasks of managing the virtual instal-
lations and upgrading them without disrupting user work. It
is also a very resource-hungry approach in a situation where
there are tens of simultaneous users. Another possibility is a
userspace nfsd. A modern one is hard to find, though. Even
if one is written, there are still issues such as port conflicts
and how to be able to serve files owned by root.

We implemented a solution using rump. It combines
rpcbind, mountd and the kernel nfsd, the kernel TCP/IP
stack and a file system driver into a self contained appli-
cation. Upon startup, the application mounts a given file
system image inside the rump kernel, configures a network
address and starts serving NFS requests.
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8. Conclusions
We presented Runnable Userspace Meta Programs, an archi-
tecture for virtualizing services from an existing operating
system kernel by using processes as containers for virtual-
ization. The benefits are easy deployment, maintainability,
speed, a lightweight nature and scalability. Supported ser-
vices are networking, file systems and device drivers.

Applications of the system are in the areas of virtualiza-
tion, isolation and segregation, development and debugging,
testing, and optimizing kernel services for each application.

Most virtualization technologies depend on the machine
architecture either in what they provide, what they can be
hosted on, or both. Rump can be made to work anywhere.

We believe that this work shows the direction to how
monolithic Unix kernels should be structured: it extrudes
rigor and a component-oriented approach from a system
which has been historically very loosely structured. We fur-
ther analyzed the structural requirements of a kernel targeted
for rump virtualization and found them to be akin to clean
design and kernel module support. Our implementation was
done and is in use on NetBSD.

Availability
The described code is available under the BSD license from
the NetBSD repository in the directory src/sys/rump. See
http://www.NetBSD.org/ for further information.
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