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Abstract
To work together, members of a virtual organisation must be able to establish co-
operation, exchange information with each other, and co-ordinate shared activities
across open interfaces with strong support from information and communications
technologies. This paper promotes the concept of a process ontology as a
groundwork for communication, co-operation, and co-ordination for virtual
enterprises and teams. We discuss the background of our work and related activities
in ontology development, give a scenario of a future mode of operation for a virtual
enterprise, and describe our work in progress aimed at visualising and prototyping
shared engineering ontologies and using them as a basis of agent-based process co-
ordination across the Internet.
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1 INTRODUCTION

A long-standing research area in engineering applications of computing is the
integration of heterogeneous systems such CAD, CAM, operations management,
product data management, and workflow management. Various methods, tools, and
techniques have been identified in this work, notably standards for product data
representation (STEP and related ISO standards) and protocols for accessing such



data (SDAI), and various tools for electronic commerce (such as EDI). The area has
also proved attractive for methods and tools developed elsewhere, such as in
distributed computing (CORBA, DCOM, Java), computer-supported co-operative
work (CSCW), and artificial intelligence.

Yet integration of engineering systems has proved a tough nut to break.
Although this difficulty must be attributed to several sources, one major culprit for
the limited success is that the actual engineering processes that underlie the systems
are unknown, badly understood, or complex — or most often, all three of these.

At the present, the Internet and its technologies are rapidly changing the basic
platform of information and communications technologies (ICT) that forms the
basis of process integration. With the rapid emergence of Internet-savvy CAD,
PDM, document management, workflow management, and other engineering
systems, the technological prerequisites for engineering process integration are
rapidly becoming a reality.

The work described in this paper is based on the hypothesis that even with these
improved tools, engineering process integration will remain elusive unless the
underlying, shared knowledge of engineering processes can be made explicit, visible
and accessible by its participants, and applicable to tailor and control engineering
systems and system integration frameworks. In other words, we propose that
integration must be based on an explicit and shared domain ontologies for
engineering processes — the shared nomenclatures describing products, their
structure in terms of subsystems and components, the engineering activities that
build them, the resources and actors that are needed to implement the activities, the
major events and checkpoints occurring during the evolution of the process, and the
various relationships between such ontology entities.

This conceptual paper is structured as follows: First, we discuss the concepts and
background of our work and describe briefly some related activities in ontology
development in section 2. Based on this, section 3 will specify the scope and
objectives of our work. Next, section 4 gives a scenario of a future mode of
operation of a virtual enterprise facilitated by shared ontologies and related tools.
Section 5 follows with a brief description of our work in progress aimed at
visualising and prototyping shared engineering ontologies and their capability as a
basis of agent-based process co-ordination across the Internet.

2 BACKGROUND AND RELATED WORK

The basic approach of our paper is to combine ideas and methods originating from
three directions of research, namely product modelling, ontologies for knowledge
sharing, and enterprise integration. All of these are broad research areas of their
own, and we only can indicate the most central sources of our inspiration in this
section.



2.1 Product Modelling

Product modelling aims at creating computerised product representations that
capture various aspects of product data such as its geometry, engineering attributes,
manufacturing data, or bill-of-materials data. During the last decade or so, the focus
of product modelling has moved from relatively low-level representations of product
geometry to higher-level issues such as preservation of design intent, capturing
various viewpoints to product data such as those of design and manufacture, and
life-cycle management of product data. Many of these issues have been investigated
under the title Knowledge Intensive CAD (KIC) as witnessed by the recent series of
IFIP workshops bearing the name.

A direct precursor of the work reported in this paper was the Main Joint Demo
(MJD) experiment performed as a part of the GNOSIS Test Case of IMS. As
reported by Ranta et al. (1995), the experiment focused on sharing product data
across several independently developed systems representing different product life-
cycle stages. MJD implemented product data sharing through a conceptual map
between the heterogeneous product representations utilised by the various systems.
MJD showed us the potential power of the high-level mapping approach, in
contrast to the more conventional sharing of neutral low-level product data.

To preserve design intent, product modelling community has investigated
approaches such as variational and feature-based product models (Shah and Mäntylä
1996) and design history oriented models that relate the incremental evolution of
product data with an explicit design process model. Our own past experience in this
direction was reported by Lahti et al. (1996). Meanwhile, research on product data
management has studied the same issues from somewhat different perspective. This
research studies the evolution of product data using concepts such as versioning,
configuration management, and change propagation.

Summing up, in product modelling research it has transpired that proper
articulation of product evolution must be based on a reasonably fine-grained model
of the engineering process that originates the changes. Symmetrically, to articulate
properly the semantics and inter-dependencies of engineering process steps, a model
of the design data used or created by the steps is needed. We conclude that
development of integrated product and process models a topic of high current
interest in product modelling.

2.2 Ontologies and Knowledge Sharing

The concept of an ontology, as used in this paper, was originally introduced in
artificial intelligence research for sharing knowledge between independently
developed knowledge-based systems. A particularly significant contributor was the
DARPA Knowledge Sharing Effort conducted in the USA during early 90’s. It
developed several tools intended to facilitate knowledge transfer across
heterogeneous systems, including the Knowledge Interchange Format (KIF, see
X3T2 (1995)), a human-readable knowledge representation language based on first-



order logic and some second-order capabilities, the Knowledge Query and
Manipulation Language (KQML, see Finin et al. (1994)), a transport mechanism
intended to support the development of agent command languages for Internet
agents, and the Ontolingua language intended for describing shared ontologies. A
recent significant effort in knowledge sharing is the Open Knowledge Base
Connectivity (OKBC) proposal by Chaudhri et al. (1998).

Of these efforts, the work on ontology development and sharing is particularly
relevant for the scope of this paper. Tom Gruber (1993), the father of Ontolingua,
defines simply: “An ontology is a specification of a conceptualisation … That is,
an ontology is a description of the concepts and relationships that can exist for an
agent or a community of agents … for the purpose of enabling knowledge sharing
and reuse.”

So, a shared ontology is intended to form the basis of communication by giving
a meaning to the terms and structures used in the discourse between some
communicating partners. It also represents a commitment made by the partners to
obey the defined constraints, relationships, and semantics in their communication.

Ontolingua provides a KIF-based language and a system for describing ontologies
in a form that is compatible with multiple representation languages. In particular,
it provides a standard declarative language with forms for defining classes, relations,
functions, objects, and theories. It translates such definitions into the forms of
supported representation systems. Therefore, ontologies written in Ontolingua can
be shared by multiple users and research groups using their own representation
systems, and ported from system to system.

The present collection of available Ontolingua ontologies covers quite specialised
areas such as abstract algebra, chemical elements, mechanical components, and
simple geometry. As we can see from these examples, Ontolingua ontologies
typically describe knowledge of a domain rather than the process in which the
knowledge is created or used.

2.3 Enterprise Modelling

Enterprise modelling using informal graphical models such as IDEF-0 is now
common industrial practise in areas such as Business Process Re-engineering.
IDEF-0 is also used in STEP application protocol specifications to clarify their
scope and information requirements. In both cases, the models are intended for
documenting the processes and communicating their structure to human readers. We
believe that future expansion and use of STEP must be based on more formal,
machine interpretable process models.

Process modelling specifically for facilitating process integration is addressed by
enterprise integration frameworks such as the CIM Open Systems Architecture
(CIMOSA) developed in a number of European projects, the GRAI GIM model
developed over the years at the GRAI laboratory of University of Bordeaux, and the
PERA model developed at Purdue University. Bernus, Nemes and Williams (1996)
give a useful introduction to these models, while Bernus and Nemes (1996) give a



view of the depth and breadth of current work. These activities do not directly
address the issues arising in distributed virtual enterprises — the area where we aim
to concentrate our efforts.

Recently, several research groups have proposed approaches where the knowledge
sharing methods of AI are utilised for enterprise and process modelling.

A notable example is the Enterprise Ontology developed at the University of
Edinburgh by Uschold et al. (1998). Available in Ontolingua form, this interesting
ontology defines concepts such as activities, processes, organisational units, and
strategies, and various relations amongst these and more specialised concepts
derived from these. The ontology is mainly aimed at enterprise modelling and
integration.

The Toronto Virtual Enterprise (TOVE) project at University of Toronto (see
Fox and Gruninger 1994) also aims to develop an ontology that can be used for
enterprise integration. More specifically, the ontology provides a shared
terminology that every application can jointly understand and use; defines the
semantics of each term as precisely and unambiguously as feasible; implements the
semantics in a computable form; and provides a graphical notation for facilitating
human comprehension. The present TOVE ontology appears to be oriented towards
providing a basis of agent interaction and simulation of logistics systems.

3 VIRTUAL ENTERPRISES AND PROCESS ONTOLOGIES

The practical motivation of our work stems from an emerging new paradigm of
enterprise operation: the virtual enterprise.

In its purest form, a virtual enterprise is a dynamically created entity composed of
a unique collection of collaborating partners for the purpose of satisfying a unique
customer need, and dissolving itself after its purpose has been fulfilled. Such an
organisation can be competitive if it is capable of tapping fully into the
competence of its partners, and if it can apply best practices within the limits of
these competencies. To allow this, best practice processes must be made visible and
available to the dynamic consortium that forms a virtual team. In addition, the
processes must be supported by and augmented with applicable ICT tools to reduce
the interaction costs to an acceptable level and to facilitate the communication of
process participants from different disciplines and partner companies.

Much of the existing work on virtual enterprise computing has concentrated on
the development of electronic markets. For the time being, this research has
addressed relatively straightforward enterprise operations such as order management
of commodity components or logistical operations. Even so, the development of
generally understood basic concepts has proved difficult. For instance, even the
deceptively simple concept of an “order” has many interpretations that make
achieving truly electronic commerce a challenge.

The main hypothesis and source of motivation of our work is that future progress
in virtual enterprise computing must be based on formal and shared models of the



shared processes and shared data of the co-operating partners — in short, shared
ontologies.

The need of formal ontologies is evident if we study the requirements of more
complex co-operative contacts between virtual enterprise partners than simple
commodity market relationships. In particular, we focus our interest on engineering
processes occurring between partners of a virtual enterprise, and hence the
development of engineering process ontologies. This focus is consistent with the
present trend towards increased specialisation of companies, necessitating co-
operation in product development and engineering.

A shared ontology for engineering processes should codify concepts and
connotations for describing products, engineering tasks, organisations responsible
for carrying out the tasks, main events and checkpoints occurring during the
development, and all types of relations, constraints, and axioms that may be
applicable for these basic process entities.

Examples of scenarios the belong to our scope of interest range from relatively
simple design subcontracting relationships to complex distributed design scenarios
where complex change management, configuration control, and versioning may be
needed. Section 4 will give an illustrative example of one such scenario.

To be useful, an engineering process ontology need not be all-encompassing or
globally applicable. Nor does it need to be perfectly defined before it can be used as
a basis of communication. On the contrary, we believe that during their life-cycle
useful ontologies for engineering are born to cover specialised domains, grown in
scope, mutated to cover further activities, split in parts to reuse their best practices
in novel areas, and merged again — in short, they are adapted to varying business
conditions and needs.

4 SCENARIO

To illustrate the concept of engineering process ontology, let us give a scenario of
a shared engineering work process. This scenario is based on our observations of
several industrial companies and discussions with their personnel, while not being
based on any single company.

Large engineering projects, such as construction of chemical plants or various
items of urban infrastructure, require the contribution of several independent
engineering and manufacturing companies that provide engineering, planning, and
logistics services; modules, parts, or materials; or actual construction work for the
project. Typically, the scope of these projects is large, covering several fields of
engineering (mechanical, chemical, electrical, construction); there are complex
dependencies between the various engineering, manufacturing, and construction
activities; the overall schedule is tight, with a rigid deadline; the logistics is
complex; and various types of engineering changes are expected to occur during the
progress of the project that must be contained by dynamic redesign and
rescheduling.



Various types of computer-aided tools have been developed to address some of
these issues. Prime examples include various project management tools, logistics
tools, and CAD tools. Unfortunately, from the practical viewpoint, these tools are
quite separate, and cannot be operated in an integrated fashion. This problem is
made even worse by the inherent parallelism and inhomogeneity of the underlying
engineering processes and data: data needed for a good scheduling decision may not
be timely available to the decision maker, because many of the related activities are
performed at other companies. Similarly, the data needed for a sound engineering
decision may not be available to a designer working on a subsystem of the entire
product, possibly leading to the problems of incompleteness, invalidity, and
inconsistency.

The fundamental source of these problems is that the engineering processes and
issues dealt with them are not local, but form a tangled web covering the entire
project consortium. This makes multi-supplier engineering projects an interesting
scope to study virtual enterprises and their computational infrastructure.

Clearly, to effectively deal with all engineering issues, a close linkage between
the activity models of a project (typically used for project management) and the
artefact models related to the actual engineering objects created and constructed by
the project (typically the domain of CAD/CAM software) must be achieved.
Moreover, instead of a single global activity-artefact model covering the whole
project, a genuinely distributed model is required to match with the distributed and
autonomous nature of a project consortium.

We hypothesise that agent technologies give the most attractive approach to
satisfy these requirements. This suggests an architecture where each partner is
represented by an agent that makes its capabilities and requests visible to other
agents. In addition, agents can also encapsulate engineering systems to provide
them an interface for data exchange and conversion. A special broker agent provides
a marketplace for the agents, and facilitates establishing communication between
them.

This suggests a methodology that can be described as follows:
• During the planning stage of the project, an initial rough model of the entire

project is created as a side effect of project planning. This model includes the
rough activities to be performed and their inputs and outputs in terms of
artefacts used or created.

• The project model is “published” through the agent-based co-operation
architecture. After a negotiation and contract-making phase is completed, each
agent has created its own initial model of the activities to be performed by that
agent by replicating appropriate entities of the rough model.

• During the execution of the project, agents trace the local evolution of the
project by creating more detailed model entities. The evolution of activities and
artefacts is tracked by means of an appropriate life-cycle model. Life-cycle
transitions are registered to other interested agents by change propagation.



• The project model can be investigated to determine, for instance, whether the
project is on schedule or what consequences a certain disturbance could have.

In summary, the methodology integrates a time-oriented model of the project
(activity schedule, events) with engineering-oriented models of the artefacts (product
models, documentation, etc.) in a unified whole.

To illustrate the suggested methodology, let us give a “storyboard” which relates
to a scenario where four companies participate in the execution of a project: the
project manager company, two manufacturing companies, and one construction
company.

Initially, the project manager creates a rough activity model of the whole project
with identifications of artefacts created and consumed by the various activities.
Project manager registers the created model to his agent (Figure 1). The broker is
aware of the other agents representing the partners relevant to the project.

Project 
manager

A

Broker

a1

a2
a3

A
A

A

Manufacturer 
1 Manufacturer 

2

Constructor

Figure 1 The initial activity model is registered

A matchmaking and negotiation process follows. As a result, activities of the
rough model are allocated to partners and the appropriate entities of the rough model
are replicated (Figure 2). During the execution of the project, the life-cycle
evolution of activities and artefacts is tracked by the agents. In this process, some
entities may be decomposed into more detailed ones, as in the case of the entity a1

in the figure. To maintain global consistency of the model, changes are propagated
between agents through replicated model entities.

The specific change propagation protocols are likely to vary according to the
more specific types of the activities and artefacts in question. Sometimes, all
changes in lower-level entities must be notified to other partners; sometimes, they
are of no interest outside the domain of the agent performing the changes.
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Figure 2 Activities are allocated to partners

5 WORK IN PROGRESS

The longer-term objective of our work is the development of a computational
framework for engineering process integration in virtual organisations. To explore
the issues related to any such framework, and their potential resolutions, we are
presently developing a concept prototype system called A3E (standing for Artefacts-
Activities-Actors-Events).

To capture engineering process scenarios such as the one discussed in the
preceding section, the framework must provide conceptually rich enough process
and product models. Moreover, the model concepts must be shared by the
participants — that is, they must form a shared domain ontology.

To be useful for mediating between several autonomous partners, the framework
must support communication, co-ordination and co-operation (C3) amongst the



participants of a distributed engineering process on the basis of minimal
compatibility assumptions and precompiled knowledge.

To satisfy these requirements, we designed A3E to consist of two parts:
• a model framework that combines models of engineering artefacts and processes

in a single domain ontology
• a co-ordination environment that supports virtual enterprise creation and

distributed dialogues on ontology entities on the basis of Internet agents.

5.1 A3E Ontology

To be able to exchange information at all, some minimal shared ontology between
communicating partners must be assumed. In our work, the A3E ontology fulfils
this role.

As the name suggests, the A3E ontology is based on the following base entities
and their taxonomic siblings:

Artefact: Artefacts are the things used as the input or created as the end result of
the tasks of an engineering process. Artefacts form a taxonomy of different types of
things, such as specifications, test plans, user manuals, software modules, and
CAD models.

Activity: Activities represent the actual work being performed during
engineering. An activity is a temporal thing: it starts and ends somewhere in
(known or unknown) time. It is also a process in that it consumes input artefacts
and resources, and produces output artefacts.

Actor: Actors are the things that make activities happen; they model the people
and organisations that really do the engineering work. They are also used to model
other things useful to have such as money, physical space, or machines. Unlike
artefacts, which are “short-lived” things, actors are thought of as fairly rigid things
that evolve only slowly (as compared to the duration of activities).

Event: The preceding concepts can be used to capture a static snapshot of the
state of an engineering process. The (discretised) evolution of the process, therefore,
is a sequence of such snapshots. Events denote the signals causing transitions from
one such state of the entire process to a next state. Events may originate from the
actors modelling human users, or from side effects of other events during event
propagation as discussed below.

In addition to these basic entities, the base ontology has relations, modelling
various sorts of dependencies between the entities. As the main entities, relations
too form a taxonomy.

5.2 Life-Cycle Models

The main purpose of events is to grasp the evolution of engineering processes and
the related entities. Therefore, all artefacts, activities, and actors have a life-cycle
model associated to them. A life-cycle model can be thought of as a finite state
machine which is associated to an entity. Transitions between life-cycle states are



controlled by incoming events. A fired transition may cause further events to be
created and propagated to related entities.

For instance, the artefact product  might have the following life-cycle states:
Initial  - the need for the existence of the product has been recognised and it is

instantiated
Planned  - the product has a defined project associated to it
Specified  - the product has a committed specification document
Designed  - the product has a committed design document
Engineered  - the product has a committed engineering document
Complete  - the product has a committed process plan.
We may observe that the states are partially defined in terms of the analogous

states of related documents. Indeed, the life-cycle model of the artefact document
has its own life-cycle states:

Initial  - the need for the document is recognised
Defined  - the role of the document is defined in relation to a product
Contents-assigned  - the contents of the document has been created
Committed  - the document has been declared ready
Accepted  - the document is accepted.
Figure 3 gives a definition of the life-cycle model of product  including the

above states using the Lisp list notation of our implementation. Each state is
followed by a list of transitions; in this case, each state has just one transition
leading to the next state. The transitions are represented as a list consisting of the
name of event causing the transition (e.g., define-created-by ), name of the next
state, and a predicate that controls when the transition is enabled.

((initial
   (define-created-by planned
     (or (defined? (value self 'created-by))
         (dec-defined? (value self 'created-by)))))
 (planned
   (commit-spec specified
     (committed? (value self 'specified-in))))
 (specified
   (commit-design designed
     (committed? (value self 'designed-in))))
 (designed
   (commit-engineering engineered
     (committed? (value self 'engineered-in))))
 (engineered
   (commit-process-plan complete
     (committed? (value self 'is-process-planned-in))))
 (complete))

Figure 3 Life-cycle model of product



Each artefact, activity, and actor includes a notification engine that handles
incoming events, fires enabled transitions, and propagates events to related artefacts,
activities, and actors. An important aspect of the notification engine is event
mapping.

Consider again the product  and document  life cycles above. A likely scenario of
events is as follows:
• The end user wants to commit that a specification document is finished, and

will not be changed further. In A3E, this is signified by the actor end-user

submitting the event commit  to the artefact specification-doc .
• The event commit  causes a transition from the state contents-assigned  to the

state committed  to fire for specification-doc . Now, specification-doc  is
related to a product  artefact through the relation specification-document .
Therefore, the event is propagated to product .

• However, from Figure 3 we see that the life cycle model is expecting an event
called commit-spec . Therefore, an event mapping operation that maps the
incoming commit  event to commit-spec  is required.

Each artefact, activity, and actor includes such an event mapper that handles all
incoming events, filters out uninteresting events, and maps the resulting events to
events recognisable by the recipient. Such a mapping operation has proved to be
useful in many ways. It allows modularity in ontology definitions in that life-cycle
models can be developed quite independently of each other, as long as event
mappings are possible. Moreover, the filtering operation makes it possible to adopt
the most straightforward model of all for event propagation: propagate events across
all relations.

5.3 Co-ordination Framework

The objective of the co-ordination framework is to provide facilities by which
several independent agents, each having its own a process/product model based on
the A3E ontology, can co-ordinate their shared activities. To match with this
requirement, the implemented co-ordination framework presently consists of three
related components:
• matchmaking for locating agents on the basis of their declared capabilities
• dialogue control for creating and keeping track of dialogues amongst agents on

the basis of replicated model entities
• event propagation of replicated entities.

All three tasks are implemented via passing appropriate KQML messages
between the agents. A message dispatcher transforms the incoming messages to
events that are passed to the actor entity representing the agent itself (matchmaking
or dialogue control messages) or to a local copy of a replicated entity (event
propagation).

The matchmaking service is based on a single matchmaking broker assumed to
be globally known to all agents. In the typical scenario, agents willing to provide



services to other agents advertise their capability to the broker. This allows the
broker to respond to subsequent recommend messages of other agents willing to use
the services. This is readily implemented using the standard KQML facilities.

The dialogue control service is based on replication. In the simplest scenario, an
agent A may open a dialogue with another agent B on an A3E ontology entity E

residing with A. As a result of this operation, the dialogue control service creates a
replicate E’  of E with B, and an identity relation between E and E’ .

Initially, E and E’  are exact (shallow) copies of each other. However, during
subsequent manipulation of the model, they may evolve independently. For
instance, E might model an activity that A wants to subcontract to B. In this case,
B’s model of the activity, E’ , may evolve to become quite different from E by
decomposition, further subcontracting, or like. In particular, the life-cycle states of
E and E’  can be different.
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offered

contract-
accepted
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executable

offer-
received

offer-
accepted

executablereceived

offer-
contract

accept-offerreceive-
contract
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commit-
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(propagate-notification 
   :receiver server1 
   :sender client%5 
   :ontology design-1 
   :content (rec-contract 
partner-entity) 
   :in-reply-to design-1 
   :reply-with design-
activity-client)

(propagate-notification 
   :receiver client%5
   :sender server1  
   :ontology design-
activity-client 
   :content (rec-accept-
offer partner-entity) 
   :in-reply-to design-
activity-client 
   :reply-with design-1)

(propagate-notification 
   :receiver server1 
   :sender client%5 
   :ontology design-1 
   :content (rec-commit-
inputs partner-entity) 
   :in-reply-to design-1 
   :reply-with design-
activity-client)

...

...

Figure 4 A sample distributed dialogue

To track such evolution, the identity relation between E and E’  is used for event
propagation — just like any other relation. To avoid passing unnecessary messages
across network, a proxy mechanism is included that distributes event filtering to the
sender’s site. Figure 4 gives a simple example of the life cycle evolution of two
replicate entities. Observe that no separate protocol definition for the notification
messages beyond the life cycle models of the entities is needed: the messages are
created automatically as a side effect of transitions by the notification engine.

5.4 Implementation

A3E ontologies must be open to extensions to adapt them to various specific
products and processes. Therefore, new kinds of artefact, activity, actor, and event
entities must be able to be defined and used in a model. This requires a data-driven
implementation where the entities and their behaviours can be flexibly tailored.



To achieve this, the present prototype uses a hybrid architecture consisting of a
small core system and an extension system. The core system, written in C++,
provides knowledge representation based on the frame ontology and a KQML
interface for agent communication. The extension system supports introducing new
types of A3E model entities. It is implemented by introducing a C-based interpreter
(Laumann and Bormann 1992) for the Scheme language to the core. Using frame
notation in Scheme, new model entities and their behaviours can be described and
loaded into the modeller, where the described data are translated to frame instances of
the C++ core.

6 FUTURE WORK

Our research is still at an early stage of completeness, and many issues and lines of
work still remain to be studied.

At the present, the process ontologies covered by the A3E ontology are still very
simple. The most important line of work for the near future must be to study real-
world processes and capture their essential characteristics in the ontology, refining
it as needed. We expect that in addition to identity relationship, other relationship
types between replicated entities will be found to be useful.

The actual mechanisms of maintaining replicated artefact models will require
further attention. Most likely we will include some type of checkin/checkout
scheme to maintain the consistency of several copies of “same” data. We do not
think that a locking mechanism can work in realistic cases.

The assumption that agents can remain permanently on-line is not a realistic one.
To deal with errors and network latencies, a caching mechanism is needed.

In another line of further work, we will study the integration of the life-cycle
model with some design model supporting non-monotonous evolution. Particularly
in this context, the formal properties of ontologies will become of interest, such as
their completeness, consistency, and correctness.

Last but not least, in future work we also plan to instrument real systems with
A3E wrapping, such as CAD and PDM systems or document preparation software
tools. In the near future, we also plan to replace the present Tcl/Tk user interface
with a Java-based interface embeddable in a WWW browser.

7 CONCLUSIONS

We have discussed the concept of engineering process ontologies, and discussed the
first steps of our work indented to develop a computational framework for virtual
enterprise computing on the basis of Internet agents, shared ontologies, and
distributed artefact-activity models.

Will these methods become useful in the practical sense? If yes, when and how?
We believe that the emergence of Internet computing is presently changing the



basic platform of enterprise IT systems in a direction that favours the technologies
and ideas we are suggesting in our work. Thus we deem that our approach is at least
feasible.

We also believe that our approach is compatible with the economic imperatives
that are at work in global industries. Integrating markets, global competition,
concerns of quality, cost, and environmental performance are all forcing companies
towards increased specialisation and co-operation. This creates a significant
industrial market for tools that can support virtual enterprise computing.

In our opinion, the likely path towards identifying shared engineering ontologies
will be through industry segment specific domain ontologies. At the present,
several industrial sectors are already at work in developing specific ontologies
covering electronic markets, subcontracting logistics, or configuration
management. Standards are likely to follow, ultimately leading to generally
available, shared engineering ontologies for virtual enterprise computing.
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