
In the rest of this paper, we first discuss in Section 2
the industrial requirements of virtual engineering on the
basis of the business processes that underlie and delineate
engineering activities. This gives us a basis to analyse, in
Section 3, the basic requirements that computational tools
for virtual engineering should satisfy.

Section 4 follows this by describing a challenging
application scenario of the concepts discussed earlier:
coordinating a large distributed engineering process such
as the design of an industrial plant. Finally, Section 5
gives an overview of the present state of our ongoing
work, with comments on future issues and directions for
research.

2. Motivation

The concept of virtual engineering is introduced to
respond to a number of development trends and problems
faced by industrial companies. To understand these, it is
useful to first discuss the operation of industrial
companies on the basis of their basic business processes.

For nearly all companies, the core process is the
sequence of activities directly needed to make and sell
products to customers. Typical activities include offering
products on the marketplace; selling them to the
customer; engineering the ordered product to customer
specifications; planning the production; buying the
required materials, semi-finished parts, modules, and
services; manufacturing the products; shipping them; and
installing them at customer’s site. Hence, the core process
is end-to-end: it starts from the customer and ends with
the customer. In the following, we use the term customer
order satisfaction to denote this process. See Figure 1 for
illustration.

Market
research &
customer
feedback

R & D
Product
specific-

ation
Product
design

Production
engineering

C
U

S
T

O
M

E
R

C
U

S
T

O
M

E
R

Product
market ing

Order
configuration

and sales

Product
conf iguration

Production
preparation

Production

CUSTOMER ORDER SATISFACTION PROCESS

PRODU CT PROCESS

Figure 1 Engineering processes of an industrial company

Another main process of interest for virtual
engineering is the product process. Its purpose is to
develop products that can successfully be offered on the
market by means of the customer order satisfaction
process. It is ideally also end-to-end, starting from
perceived market opportunities and customer needs, and
ending with learning about market response.

The division of labour between these two processes
varies according to the level of customisation needed to
address the requirements of an individual customer. Mass-
marketed products require no customisation from the
manufacturing company (but may need customisation
from the sales or service network). In the other extreme
case lie complex one-of-a-kind products such as industrial

plants or public infrastructure items where extensive
design and engineering are required for every order. Most
businesses lie somewhere between these extremes.

The customer order satisfaction process should be as
effective, simple, and dependable as possible:

• The information should be linear and one-directional.
Customer requirements are gathered completely and
accurately at the start of the process, leaving no need
to go back to the customer to clarify the original order.

• Reuse of existing product information such as solution
principles, product structures, modules, interfaces,
subassemblies, parts, materials, or process plans
should be maximised.

• Effective and reusable business for establishing
customer requirements, translating these into a product
specification, configuring a product that meets the
specification, and turning the product description to
manufacturing should be defined and used. These
processes should be repeatable and measurable.

The above goals define implicitly requirements also for
the product process:

• The outcome of a product process is not a single
product, but rather a customisable product platform
consisting of a range of variant modules and parts
which can be combined in multiple ways to create
product instances satisfying the specific requirements
of a customer.

• Methods and tools for gathering user requirements and
translating these to valid and effective customised
product configurations should be developed during the
design process (“design for customisability”) and
made available to the customer order satisfaction
process.

The challenge to product developers is to address all these
issues (and other product life-cycle issues) already during
product development by applying principles of
simultaneous engineering. To meet this challenge once
and for all during the initial design of a new product may
be too much to ask; therefore, product development is
seen as a process that continues through the entire life of a
product platform. The continuous product process should
follow some clear principles through which new
generations and versions of the platform, its modules, and
related information are specified, generated, and released
for use by the customer order satisfaction process.

A common mistake for companies is to allow the
distinction between product process and customer order
satisfaction process to blur. To win an order, entirely new
functionality is promised by sales to the customer. To
realise these, “private” new versions of existing platforms
and modules are created, without paying attention to their
reusability. As a result, the number of product versions
and configurations proliferate, adding to the cost of
production, logistics, installation, and service, while
designers are too busy with hacking the product to
develop the base platform.

The basic motivation of virtual engineering from
industrial viewpoint is that customer order satisfaction
and product processes increasingly often take place not
within a single company (as implied by Figure 1), but
cross company borders with the result that the enterprise
executing them is virtual (Figure 2).

Production
Production

Production

Product
configuration

R & D

Marketing
& sales

Market research

Product
development

Product
development

Production
engineering

Figure 2 Engineering processes in a virtual enterprise

Among the prime reasons for this development, the
following bear mention:

• Increasing complexity of products requires the
application of increasingly specialised technologies in
products, necessitating the use of external design and
manufacturing resources.

• To be competitive and effective (“agile”), companies
concentrate on their core competencies, resulting in
increased use of extenrnally bought designs,
manufacturing, and services.

• Partnership thinking and simultaneous engineering
principles lead to close coupling of the design,
planning, and manufacturing activities of companies
and their main suppliers and service providers.

• Pressures for rapid order turnaround and application of
just-in-time principles have resulted in the elimination
of material and semi-finished product buffers,
coupling the supply chain directly in the order
satisfaction process.

In addition, also the internal structure of companies is
increasingly “virtual” through application of principles
such as profit centres and activity based costing. Instead
of the hierarchically managed, military-like organisations
of the past, a modern company is better characterised as a
network of teams, each managed and working almost like
an independent small enterprise.

3. Infrastructure for VE

The industrial objective of virtual engineering is to
achieve the desirable qualities of engineering processes
discussed in Section 2 also when they are executed by a
virtual organisation, instead of a single company. A
superior level of performance is actually expected:
otherwise, the virtual organisation would have no
economic justification. A fundamental hypothesis of our
work is that to achieve fully this objective, a
computational infrastructure specifically aimed at
supporting virtual engineering is needed.

On the basis of the above discussion, the following
qualitative requirements for the computational
infrastructure can be stated:

• Life-cycle support: The infrastructure must provide
explicit support to life-cycle engineering (Alting and
Legarth 1995) covering the entire range of product and
customer order satisfaction processes. In consequence,
it must provide facilities for artefact (product) and
activity (engineering process) modelling covering all
stages of Figure 1 and beyond.

• Co-operation and co-ordination: The infrastructure
must support engineering processes crossing company
boundaries. This includes supporting information
sharing between parallel engineering activities, and
information flow between sequential processes.
Support of co-operation independently of time or
location differences is essential. In addition to pre-
planned co-operation, also opportunistic co-operation
emerging dynamically to address a unique customer
requirement should be supported.

• Distributed: The infrastructure must be capable of
dealing with truly distributed problems, where no
centralised or shared data are available. Instead, co-
ordination and communication must be based on
symmetric distributed processing on the basis of
potentially inhomogeneous systems.

• Adaptable: To maximise its industrial usefulness, the
infrastructure must be adaptable to various business
conditions. For instance, individual instances of the
producer-supplier scenario vary considerably in the
degree of existing shared knowledge from long-term
strategic alliances and partnerships to purchasing of
commodity components from a competitive open
market.

• Learning: During the operation of a virtual
organisation, its partners will learn about effective
solutions to engineering problems and effective ways
of sharing work and knowledge. These product and
process innovations should be reusable in later co-
operation.

To satisfy the above requirements, large-scale application
of product models, engineering process models, and
product realisation process models is needed. For
reaching the specific objectives of virtual engineering, it

is important that product and various process models �are
closely integrated.

A central aspect of virtual engineering is that we
cannot assume that such models of co-operating partners
are directly shared (at least initially), nor can we assume
that some central shared repository of models integrates
the partners. Instead, shared product models, engineering
process models, and product realisation process models
evolve during the progress of the co-operation.

Such learning and information sharing must be based
on joint understanding of common concepts and
terminology — shared ontology. To certain extent,
“standard” ontologies common in engineering — such as
those in (Farquhar et al. 1992) — may be used to the
extent applicable. More detailed shared ontologies should
emerge during the co-operation as the result of a
collaborative learning process (Gaines et al. 1996; n-dim
1995).

4. Application Scenario

Large engineering projects, such as construction of
chemical plants or various items of urban infrastructure,
require the contribution of several independent
engineering and manufacturing companies that provide
engineering, planning, and logistics services; modules,
parts, or materials; or actual construction work for the
project. Typically, the scope of these projects is large,
covering several fields of engineering (mechanical,
chemical, electrical, construction); there are complex
dependencies between the various engineering,
manufacturing, and construction activities; the overall
schedule is tight, with a rigid deadline; the logistics is
complex; and various types of engineering changes are
expected to occur during the progress of the project that
must be contained by dynamic redesign and rescheduling.

Various types of computer-aided tools have been
developed to address some of these issues. Prime
examples include various project management tools,
logistics tools, and CAD tools. Unfortunately, from the
practical viewpoint, these tools are quite separate, and
cannot be operated in an integrated fashion. This problem
is made even worse by the inherent parallelism and
inhomogeneity of the underlying engineering processes
and data: data needed for a good scheduling decision may
not be available to the decision maker, because many of
the related activities are performed at other companies.
Similarly, the data needed for a sound engineering
decision may not be available to a designer working on a
subsystem of the entire product, possibly leading to the
problems of incompleteness, invalidity, and inconsistency.

The fundamental source of these problems is that the
engineering processes and issues dealt with them are not
local, but form a tangled web covering the entire project
consortium. This makes multi-supplier engineering
projects an interesting scope to study virtual engineering
and its computational infrastructure.

Clearly, to effectively deal with all engineering issues,
a close linkage between the activity models of a project

(typically used for project management) and the artefact
models related to the actual engineering objects created
and constructed by the project (typically the domain of
CAD/CAM software) must be achieved. Moreover,
instead of a single global activity-artefact model covering
the whole project, a distributed model is required.

We hypothetise that agent technologies give the most
attractive approach to satisfy these requirements. This
suggests an architecture where each partner is represented
by an agent that makes its capabilities and requests visible
to other agents. In addition, agents can also encapsulate
engineering systems to provide them an interface for data
exchange and conversion. A special broker agent provides
a marketplace for the agents, and facilitates
communication between agents by message conversion
and mapping.

This suggests a methodology that can be described as
follows:

• During the planning stage of the project, an initial
model of the entire project is created as a side effect of
project planning. This model includes the rough
activities to be performed and their inputs and outputs
in terms of artefacts used or created.

• The project model is “published” through the agent-
based co-operation architecture. After a negotiation
and contract-making phase is completed, each agent
has created its own initial model of the activities to be
performed by that agent.

• During the execution of the project, the project model
is maintained with the help of the agents by registering
locally created more detailed model entities to the
distributed repository maintained by the agents and the
broker.

• The evolution of activities and artefacts is tracked by
means of an appropriate life-cycle model. Life-cycle
transitions are registered to the broker and other
interested agents and used for change propagation.

• The project model can be investigated to determine,
for instance, whether the project is on schedule or
what consequences a certain disturbance could have.

In summary, the methodology integrates a time-oriented
model of the project (activity schedule) with engineering-
oriented models of the artefacts (product models,
documentation, etc.) in a unified whole that can be used
as a basis of simulation and simulation-based scheduling.

To illustrate the suggested methodology, let us give a
“storyboard” which relates to a scenario where four
companies participate in the execution of a project: the
project manager company, two manufacturing companies,
and one construction company.

Initially, the project manager creates a rough activity
model of the whole project with (empty or rough) models
of the artefacts created and consumed by the various
activities (Figure 3).

Project
manager

a1

a2
a3

Figure 3 Initial activity model.

Project
manager

A

Broker

a1

a2
a3

A
A

A

Manufacturer
1 Manufacturer

2

Constructor

Figure 4 The initial activity model is published.

Project manager registers the created model to his agent
(Figure 4). The agent further publishes the model to the
broker. The broker is aware of the other agents
representing the partners relevant to the project.

Project
manager

A

Broker

a1

a2
a3

A
A

A

Manufacturer
1 Manufacturer

2

Constructor

a3

a1
a2

a11 a15

a12

a13

a14

Figure 5 Activities are allocated to partners.

A negotiation follows. As a result, activities of the rough
model are allocated to partners and a contract network
maintained collectively by the agents is created (Figure
5). Each agent maintains a model of the relevant part(s) of
the project. During negotiation, partners may need to
decompose the activities allocated to them to create more
detailed local models. The activities of the local models
may be planned recursively; for instance, in Figure 5
manufacturer 1 decomposes activity a1 in a lower-level
activity network.

During the execution of the project, the life-cycle state
of activities and artefacts is maintained. Transitions are
registered at the broker, who may decide to propagate the
transitions to the interested agents on the basis of the life-
cycle model and links to data maintained by the other
brokers.

5. Current Work

At the present, research towards realising a computational
system with the behaviour discussed in the previous
section is in progress. In this work, a simple prototype
modelling environment, titled A3 (for Artefacts-
Activities-Actors) has been created.

To be able to exchange information at all, some
minimal shared ontology between communicating
partners must be assumed. In our work, the A3 ontology
fulfils this role. As its name suggests, the A3 ontology is
based on the following base entities:

Artefact: Artefacts are the things created as the final or
intermediate product during an engineering process.
Available artefacts may also be used as a basis of
further redesign activities. Artefacts form a taxonomy
of different types of things, such as specifications, test
plans, user manuals, software modules, and CAD
models (and their fine-grained constituents, such as
features).

Activity: Activities represent the actual work being
performed during engineering. An activity is a
temporal thing: it starts and ends somewhere in
(known or unknown) time. It is also a process in that it
consumes some input artefacts and resources and
produces some output artefacts. Similarly to artefacts,
activities also form a taxonomy.

Actors: Actors are the things that make activities happen;
they are intended to model generically the people and
organisations that really do the engineering work.
They might also be used to model other useful things
to have such as money, physical space, or machine.
Unlike artefacts, which are “short-lived” things, actors
are thought of as fairly rigid things that evolve only
relatively slowly (as compared to the typical duration
of activities). As before, they form a taxonomy.

In addition to the basic entities (and their taxonomic
siblings), the base ontology has relations, modelling
various sorts of dependencies between the entities. Like
the other entities, relations form taxonomies.

A specific objective of the base ontology is to grasp
the time evolution of engineering processes. Therefore, all
entities of the model have a life-cycle model associated to
them. A life-cycle model can be thought of as a finite
state machine which is associated to a model entity.
Different entity types have different life-cycle models.

According to the virtual construction scenario, the
engineering work is performed in many parallel
concurrent threads with complex inter-dependencies. A
central aspect of the model must be the proper recording
of these dependencies and their use to propagate changes
and maintain the overall consistency of the distributed
process.

To deal with this requirement, we have followed the
approach chosen by the SHADE and SHARE projects,
and implemented a separate ontology for change control
and management following the principles of the Redux’
server (Petrie 1993). This ontology characterises design in
terms of the goals, decisions, assignments to design
variables, and the rationale of the decisions. If two
decisions (i.e., the assignments performed by the
decisions) are found to contradict, the model can be used
to propagate appropriate state changes to affected model.

To make use of Redux’, it must be linked to the base
A3 ontology. In our work, this is implemented by
associating KQML (Finin et al. 1992) messages in the
life-cycle models of the base A3 model entities following
an approach similar to (Bradshaw 1996).

Of course, A3 ontologies must be open to extensions
to adapt them to various specific products and processes.
Therefore, new kinds of artefact, activity, and actor
entities must be able to be defined and used in a model.
This clearly requires a data-driven implementation
approach where the entities and their behaviours can be
flexibly and completely tailored. To achieve this, the
present prototype uses a hybrid architecture consisting of
a small core system and an extension system.

The core system provides a knowledge representation
method based on the frame ontology and a KQML
interface for agent communication. The core is written in
C++. The extension system supports introducing new
types of A3 model entities. It is implemented by
introducing a C-based interpreter (Laumann and Bormann
1992) for the Scheme language to the core. Using frame
notation in Scheme, new model entities and their
behaviour can be described and loaded into the modeler,
where the described data are translated to frame instances
of the C++ core.

6. Conclusions

Virtual Engineering is a necessary next step needed to
realise the full potential of virtual organisations. Of
course, not all companies will need to become virtual.
However, the development trends discussed in Section 1
are strong enough in many lines of business to suggest
that those companies who learn to work effectively in
virtual organisations are more likely to survive than those
who do not. Moreover, although the work discussed was

mainly motivated by problems arising in virtual
organisations, also conventional enterprises can benefit
from Virtual Engineering.

A good time to commence research and development
intended to support Virtual Engineering is now. Through
introduction of tools such as product models, product data
management systems and workflow management systems,
most advanced companies have reached the level where
the integration of all these (and other) view of engineering
work is becoming within reach.

References
1. The n-dim Group, N-dim – An Environment for

Realizing Computer Supported Collaboration in
Design Work, Technical Report EDRC 05-93-95,
Engineering Design Research Center, Carnegie-
Mellon University.

2. L. Alting and J. B. Legarth, Life cycle engineering and
design, CIRP keynote paper, August 1995, CIRP
Annals, vol. 1995.

3. J. M. Bradshaw, KAoS: An Open Agent Architecture
Supporting Reuse, Interoperabiliby, and Extensibility.
The Tenth Knowledge Acquisition for Knowledge-
Based Systems Workshop, Banff, Canada, on
November 9-14, 1996, http://ksi.cpsc.ucalgary.ca/
 KAW/KAW96/bradshaw/ KAW.html .

4. A. Farquhar, R. Fikes, W. Pratt, and J. Rice,
Collaborative Ontology Construction for Information
Integration, Knowledge Systems Laboratory
Department of Computer Science, KSL-95-63, August
1 9 9 5 . A v a i l a b l e a s http://www-

 ksl.stanford.edu/KSL_Abstracts/KSL-95-63.html .
5. T. Finin, D. McKay, and R. Fritzson, An Overview of

KQML: A Knowledge Query and Manipulation
Language, Technical Report, Computer Science
Department, University of Maryland, 1992. For on-
l i ne i n f o rma t i on on KQML, see

 http://www.cs.umbc.edu/kqml/ .
6. B. R. Gaines, D. H. Norrie, A. Z. Lapsley and M. L.

G. Shaw, Knowledge Management for Distributed
Enterprises, Proc. Tenth Knowledge Acquisition for
Knowledge-Based Systems Workshop, Banff, Alberta,
C a n a d a , N o v e m b e r 9 - 1 4 , 1 9 9 6 ,

 http://ksi.cpsc.ucalgary.ca/KAW/KAW96/gaines/
 KMDE.html .

7. O. Laumann and C. Bormann, Elk — An Extension
Language Kit, USENIX Computing Systems, vol. 7,
no. 4, 1994. For information on Elk, see also

 http://www-rn.informatik.uni-bremen.de/software/elk/ .
8. C. Petrie, The Redux' Server, Proc. International

Conference on Intelligent and Cooperative
Information Systems (ICICIS), Rotterdam, May 1993,

 file://cdr.stanford.edu/pub/CDR/Publications/Reports/
 design-nav.ps .

