
Application mobility with Host Identity Protocol – Extended Abstract
Teemu Koponen and Andrei Gurtov

Helsinki Institute for Information Technology
{tkoponen,gurtov}@hiit.fi

Pekka Nikander
Ericsson Research NomadicLab

pekka.nikander@nomadiclab.com

Introduction
In this paper, we consider process migration from a com-
munications point of view. We use the term application
mobility while referring to an application being moved
from a host to another during its execution. In this pa-
per these hosts are called source and destination hosts,
respectively. Moreover, we define a host to be virtual,
and thus, not to equal to a physical host as such. There-
fore, multiple (virtual) hosts may coexist within a phys-
ical host.

The application movement should be transparent for
both applications themselves and hosts they are commu-
nicating with. Neither it should compromise the security
of communications. These requirements form the prob-
lem we are responding to. We enhance Host Identity
Protocol (HIP)[3] to meet the requirements, because we
see support for multiple Host Identities (HI) in a physi-
cal host as logical development for the HIP architecture.

HIP introduces a new layer into the TCP/IP proto-
col stack between the transport and network layers. In
essence, the HIP layer is an isolator between applica-
tions and mobility. As we include the state of the com-
munication stack upwards from the transport layer to the
migrated application state, we can migrate applications
regardless of the transport and application protocols they
use. The three fundamental challenges which must be
addressed to provide such transparency for the transport
layer, applications, and connected hosts are managing
state inconsistencies, resolving state conflicts, and main-
taining state syncronization[4]:

Preserving connection states is difficult as the trans-
port protocols are not designed with (application) mobil-
ity in mind, and an address change, caused by mobility,
is subject to introduce state inconsistencies between the
network layer and transport layer.

Application mobility may create state conflicts in the
transport layer. If an address is relocated together with
an application to a destination host and the same address
were used again in the source host, it would be possible
to have connections from two hosts to a third host with
identical connection invariants.

Introduction of NAT (Network Address Translation)
and NAPT (Network Address Port Translation) devices
make state synchronization between hosts challenging
as the same address:port–address:port tuple is no more

usable as a connection invariant in the both communica-
tion end-points.

The above challenges are the first concrete signs for
us to imply that HIP might provide an elegant solution to
the problem of providing transparency for the transport
layer, applications and connected hosts in an application
mobility architecture. To elaborate, as HIP separates the
transport layer from mobility induced network address
changes, HIP can offer a cure for the first two challenges.
As NAT and NAPT devices do not intermix with host
identities, the third challenge becomes also manageable.

Delegation – the missing piece
One could simply consider application mobility as a
form of mobility or multi-homing. However, the situa-
tion is more complex, as in HIP communicating a multi-
homing or mobility caused address change to other hosts
requires a host to have an access to a private crypto-
graphic key of its host identity[3]. Therefore, the private
key should be moved, together with an application, from
a host to another to maintain the host’s multi-homing and
mobility abilities. While moving a cryptographic key
may be impossible in cases where secure tamper proof
physical storages are used, it could also result in un-
desirable security implications. Moreover, as HIP host
identities are architecturally more bound to hosts than to
applications, the identities should not be moved.

Unfortunately, if a private cryptographic key can’t be
transferred, a destination host of a migrated application
becomes dependent on a source host. Thus, we would
introduce a strong residual dependency[1] to the source
host. Clearly, the host identity must change if an ap-
plication moves from a host to another. However, cur-
rently the host identities are assumed to remain the same
for the whole lifetime of a HIP association. Therefore,
we now consider the implications if HIP had support for
changing host identities transparently from the transport
layer’s and other hosts’ point of view.

A Host Identity Tag (HIT) is a cryptographic hash of a
host identity[3]. As the transport layer and applications
bind to HITs and not to host identities, instead of moving
a host identity of a source host, the source host delegates
the responsibility of its HIT to a destination host. As a
result, hosts can assume the destination host to represent
the HIT of the source host, even the host identity is dif-



(HI_D, HIT_S)

(HI_X, HIT_X)

(HI_S, HIT_S)

Figure 1: A delegation certificate (a curve) authorizes
a destination host (a hollow circle) to use the HIT of a
source host (a black circle) for the communication with
another host (a grey circle).

ferent. In the following, we consider the realization of
the missing piece, namely the delegation, in more detail.

Establishing and maintaining associations
In basic HIP, DNS stores the contact and host identity
information of hosts. However, it is difficult to keep
DNS up to date with the application mobility caused host
identity changes. Thus, a destination host must be able
to respond to HIP association handshakes directed to a
HIT of a source host. Moreover, it must prove its autho-
rization to the specific HIT whether the source host is
available or not. Therefore, the source host must sign a
delegation certificate with the private cryptographic key
of its host identity. The certificate enables a host with the
source host identity information to validate the destina-
tion’s authority to the source HIT, as the certificate binds
the old source host identity information (still in DNS) to
the destination host identity (not yet in DNS). Figure 1
depicts the concept of delegation.

Applications may migrate multiple times sequentially,
even in a rapid manner, and thus, DNS may contain
host identity information older than the last application
movement would let assume. Therefore, we do not re-
strict the number of delegation certificates a destination
host may include to handshake responses. Instead, hosts
can construct a trust chain from the received certificates.

Finally, to maintain the plain mobility and multi-
homing abilities, a destination host must inform a
respective HIP rendezvous server about its address
changes. To prove its authority to a source HIT, the
destination host includes the necessary delegation cer-
tificates while contacting the server to update its current
address. Updating already established HIP associations
to reflect the address changes is simple, as the destina-
tion’s authority to the source HIT was already validated
while establishing the HIP associations.

Transparency for applications
Actions of an application have established HIP asso-
ciations to hosts while it runs within a source host.
Thus, before the application may move, the destination
host must establish new HIP associations to the same
hosts. As when updating the rendezvous information, it
is enough that the destination host merely includes nec-

essary delegation certificates to handshakes.
There could be several HIP associations established

with the same HIT as it’s represented simultaneously by
both the source and the destination host. However, as
two hosts are expected to share a single HIP association,
the new associations, the destination host establishes, re-
place the old ones. This ultimately renders application
mobility transparent for the layers above HIP within the
hosts that applications communicates with.

Maintaining transparency for the application within
the destination host is straight-forward. Establishment
of HIP associations together with the delegation certifi-
cates already introduced the delegated source HIT, as a
side-effect, for the layers above HIP.

Conclusions
In this paper, we have suggested a new application mo-
bility architecture based on HIP and delegation certifi-
cates. The usability of the delegation certificates is
by no means limited to application mobility; instead,
a host may certify another host to impersonate itself,
even though an application does not migrate. Thus, our
architecture resembles the Delegation-Oriented Archi-
tecture (DOA)[5]. Clearly, further work is required to
understand the wider architectural implications of the
new proposed delegation primitive and the relationship
to signaling delegation in general[2].

Our initial work has already shown the importance of
truly supporting multiple host identities within a physi-
cal host. Finally, we note that the delegation primitive
enhances HIP to actually support two layers of mobility
in a secure way: mobility due to physical movement and
mobility due to management and administrative causes.

References
[1] D. S. Milojičić, F. Douglis, Y. Paindaveine, R. Wheeler,

and S. Zhou. Process Migration. ACM Computing Sur-
veys, 32(3):241–299, 2000.

[2] P. Nikander and J. Arkko. Delegation of Signalling Rights.
In Proceedings of Security Protocols, 10th International
Workshop, pages 203–212, Cambridge, UK, Apr. 2002.
Springer.

[3] P. Nikander, J. Ylitalo, and J. Wall. Integrating Security,
Mobility, and Multi-Homing in a HIP Way. In Proceed-
ings of Network and Distributed Systems Security Sympo-
sium (NDSS’03), pages 87–99, San Diego, CA, USA, Feb.
2003. Internet Society.

[4] G. Su. MOVE: Mobility with Persistent Network Connec-
tions. PhD thesis, Columbia University, Oct. 2004.

[5] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan,
R. Morris, and S. Shenker. Middleboxes No Longer Con-
sidered Harmful. In Proceedings of the 7th USENIX Sym-
posium on Operating System Design and Implementation
(OSDI 2004), San Fransisco, CA, USA, Dec. 2004. ACM
Press.


