

GSM - GPRS

UMTS-
GPRS

WLAN

WLAN

1
2

3

GSM - GPRS

WLAN

WLAN

1
2

3

A PROTOTYPE FOR POLICY DRIVEN CONTROL OF
HETEROGENEOUS NETWORK ACCESS

Sébastien Pierrel, Topi Erlin and Janne Roslöf
Turku Polytechnic, School of Telecommunications and e-Business

Sepänkatu 1, FIN-20700 Turku, Finland
sebastien.pierrel@ericsson.com, topi.erlin@exrei.fi, janne.roslof@turkuamk.fi

Tony Jokikyyny and Hannu Lehtinen

Oy LM Ericsson Ab
FIN-02420 Jorvas, Finland

tony.jokikyyny@ericsson.com, hannu.lehtinen@ericsson.com

ABSTRACT

Internet has been continuously growing and the new dimension brought by wireless mobility will support this growth
even in the future. Although the present technology supports operators to offer different kinds of wireless networks to
end-users, most mobile terminals are yet capable neither to access simultaneously several networks nor truly roam
between the different ones. Continuous research on this field has been ongoing for several years and it is just a matter of
time when the majority of the mobile nodes will integrate more than one wireless access technology. Thus, a natural
question is how these interfaces can be controlled and selected in such a way that they enable the best possible access –
depending on the available resources, the operators’ preferences and the needs of the end-user. In this paper, a prototype
implementing a policy selection mechanism for the heterogeneous network access selection is presented.

KEYWORDS

Network access, Wireless communication, Mobile IP, Linux, J2ME

1. INTRODUCTION

Future mobile nodes usually integrate more than one wireless technology, so they could be
connected to data networks by all possible ways. For example, a wireless terminal could
open a packet switched access through WLAN, GSM-GPRS, UMTS-GPRS or Bluetooth.
This scenario is illustrated in figure 1.

Figure 1. A mobile node located in area where there are three available access networks.

There is no network interface that could assure global scale of connectivity, and the
different interfaces have very different characteristics. The available access interfaces may
vary, for instance, in terms of cost, bandwidth and availability. It would be ideal to
combine the best sides of each interface, like the GSM’s high coverage and availability, as
well as the WLAN’s high bandwidth. When the currently used interface is, for example,
losing its bandwidth, the device should be able to switch to another interface in the area
without any action by or, eventually, even any notable effect to the end-user (seamless
vertical handover). Moreover, also the operators may want to move some of the clients to
another interface during high traffic load in a specific interface. In a situation when there
are several interfaces available, the end-user might prefer to affect according to which
policy (Yavatkar et al., 2000) the used interface is to be selected.

2. BACKGROUND

Mobile IP is an open standard, defined by the Internet Engineering Task Force (IETF)
Request for Comments (RFC) nr. 2002 (Perkins, 1996), latterly revised as RFC 3220
(Perkins, 2002). The mobile IP is a mechanism for maintaining transparent network
connectivity to mobile hosts. A mobile host can be addressed by the IP address it uses in its
home network (home IP address) regardless of the network that it is currently physically
attached to. Therefore, the ongoing network connections to a mobile host can be
maintained even as the mobile host is moving from one subnet to another. The main
concepts of the Mobile IP are illustrated in figure 2.

Figure 2. The main components of the mobile IP solution.

Home address is a permanent IP address that is assigned to a mobile node (MN). It remains
unchanged regardless to where the mobile node is attached to the Internet. Whenever the
MN is not attached in to its home network, the home agent gets all the packets destined to
the MN and arranges to deliver them to the MN’s current point of attachment using the

MN’s current care-of address. The foreign agent is a router on an MN’s visited network
providing routing services to the MN while registered. The foreign agent extracts the
datagrams that were tunneled by the MN's home agent and delivers them to the MN. (Yi-
an, 1995; Perkins, 1996)

Mobility support in IPv6 follows the design of mobile IPv4. It retains the ideas of a home
network, home agent, and the use of encapsulation to deliver packets from the home
network to the MN's current point of attachment. While discovery of a care-of address is
still required, an MN can configure its care-of address by using stateless address auto-
configuration and neighbor discovery. Thus, the foreign agents won’t have to support
mobility in IPv6. (Perkins, 1996; Deering and Hinden, 1998; Arkko, Johnson and Perkins,
2003)

MIPL Mobile IPv6 for Linux is an implementation of the mobility support in IPv6
developed by the Helsinki University of Technology (HUT) (Tuominen and Petander,
2001). The MIPL stack has been released under GNU Public License (GPL) and is
available for anyone for free (www.mipl.mediapoli.com). A joint project between Ericsson
Corporate Research and HUT implemented a multi-access extension to the MIPL and a
GUI using which a user can control the interface selection. The Linux IPv6 stack and the
MIPL were both originally designed to use only one network interface at a time. Thus, the
IPv6 stack was modified so that it could operate with several simultaneous network
interfaces and routers. Also the MIPL was enhanced to support multiple interfaces.
(Jokikyyny et al., 2002; Jokela et al., 2002)

The simultaneous multi-access feature was implemented by updating the IPv6 routing table
and the MIPL binding update list based on the user defined policies and the status of the
network interfaces. For example, the user was able define a policy that has the destination
address of his e-mail server, and list of interfaces. This causes the following: A routing
table entry for the e-mail server is created and the first priority interface on the list of
interfaces is set as the outgoing interface for this route. Also the next-hop address is set to
be the IPv6 link-local address of the router found on the first priority interface. The MIPL
binding update list is updated in order to have the entry for the destination address, and the
used interface. After that a binding update is sent to the e-mail server, where the care-of
address of the first priority order interface is used and the message is sent through that
interface. This causes the return packets to come through the same interface. (Jokela et al.,
2002)

However, the implementation did not enable transparent vertical handovers, i.e. the user
was forced to do them manually. The goal of the project presented in this paper was to
develop the prototype further to make these handovers to happen automatically, so that the
vertical handovers would be seamless, and to create a policy based tool for selecting the
best interface to be used in heterogeneous wireless environment.

3. PROTOTYPE ARCHITECTURE

The prototype was divided in two main parts: An API module that implements the policy
selection mechanism, and a GUI application that gives the user the possibility to define
policies and to monitor the selection of the network access. The different architectural
entities in the prototype environment are illustrated in figure 3. A similar concept could be
used in a real mobile terminal.

Figure 3. The prototype architecture.

The purpose of the API module is to add an interface selection mechanism to the MIPL
stack. It sorts the priority ordered interface list, according to default policy sent by the
GUI, and forwards this list to the stack. It can fetch data from the stack and deliver it to
applications, and vice versa. Combining the policies given by the applications and the
availability of the interfaces from network devices, the API module defines the preferences
of interfaces. The GUI basically gives the policy rules to the API but other applications
have the possibility to define their own policies, too. The API module was implemented
with the C programming language, and designed to run in the kernel of the Linux operating
system.

The GUI is used for sending user selected policies to the API module, so that the module
can take into account the user preferences while enabling and disabling interfaces in Linux
kernel space. It also displays interface details (e.g. operator, cost and bandwidth
information) to the user. The GUI was implemented with Java 2 Micro edition’s (J2ME)
MIDP 1.0. Thus, it is mainly targeted to mobile phones with proper Java support.

The policy rules define how to sort the list of interfaces into a priority order. The policy
data is the source containing data about different access interfaces provided by specific
operators. The policy data could, for instance, be located in the Internet and the content in
it could change continuously. Whenever the information changes, it should be updated
automatically to the MN using, for example, WAP’s PUSH method. If the policy rules
would be in the Internet, the operators could easily affect which access interface clients
must use – or allow the clients themselves to take the decision. The rules and data could
also be stored in the terminal only, but in that case the operators would not have any
influence to client’s type of access unless the data would be hard coded, for instance, in the
user’s SIM card.

The hard coded options do not provide flexibility. The automatic policy data updating
would be nice but it would not be so simple just to update data automatically without
user’s permission; usage of bandwidth costs money. In this prototype the data is stored in
an XML file and updated manually via the GUI.

4. THE STRUCTURE OF THE API MODULE

The API can be divided in three main functions: Communication with user space, network
interfaces management, and interface selection mechanism. This structure is illustrated in
figure 4.

Figure 4. The organization of the API module. Figure 5. Creation of a kernel thread for

 listening to a socket.

The API module needs to be able to send information to applications at any time.
Therefore, applications need to register to a connection-oriented service. As this prototype
focuses on being interfaced by a GUI made with J2ME, many limitations in the
communication between the kernel module and the GUI exist. Therefore, the
communication was implemented using TCP sockets. At initialization, the module starts a
kernel thread that will listen to a TCP port and wait for connections of clients (see figure
5).

Since the API has to give asynchronous notifications to applications, keeping track of all
connections made concurrently is obviously needed. Two kinds of connections are to be
taken care of: pipes and sockets. To handle the communication properly, the API module

registers a character device file. A linked list connector is used to register every new
connection. A system call is executed in the context of the process performing it, so no
specific process is needed in the kernel. Whenever a process opens the device file, its
process identifier (PID) is registered to a connector. When the listener creates another
kernel thread to handle the connection, the kthread structure pointer is registered. The
connector structure is illustrated in figure 6.

 Figure 6. The connector structure. Figure 7. The interface structure.

The network interface management is articulated around the net_device structure, from
which the status of the interface can be fetched. More information, such as the available
operators, bandwidth, delay and other QoS features, is requested. A protocol on layer 2 is
required to provide such information. Since such a protocol does not exist, those features
were simulated in this prototype. The module contains an array of structures containing
data related to the interfaces (see figure 7). The fields name, technology, Operator
and status match with the policies given by the user space application. The structure
ma_if_uinfo is used by the multi-access feature of MIPL to set the priorities. This
structure has to be passed into the stack when applying changes to the priorities.

The API saves the policies in the memory as shown in figure 8. The policies are stored in a
double-linked list filled with information given by the applications and the GUI. The
default policy is entered at the tail of the list. The field Policy_name is the identifier of
the policy. The field criteria is a structure that triggers the use of a policy over the
default one. The criteria are given as parameters by the applications when defining the
policy. The default policy has no criteria. The array IF_priority lists the interfaces
available for the policy in order of preference. Since the applications, and in particular the
GUI, are not aware of the interface names in the system (e.g. eth0, eth1, ppp0), the
policies base the identification of an interface on the specified access technology and the
operator name attached to each interface. The field rule_name is relevant to the
application that has defined the policy. Thus, a profile can be retrieved later on by the
owner of the policy without transmitting the priority list.

When an event (such as a new connection, a change in the status of an interface, or a new
policy) occurs, the list of policies must be refreshed to redefine the priorities and,
accordingly, the selection of the interface for the connection. As a kernel module, the
MIPL stack exports functions to the kernel. That is, the API module can directly call those
functions. The function ma_ctl_set_preference lets a user program change the
priority of an interface via an IOCTL call. Although the API module allows applications to
define policies in addition to the default policy, in this prototype only the default policy is
applied to the system. The module modifies the routing table of the MIPL according to the
active default policy.

Figure 8. The policy structure.

5. THE GUI APPLICATION

From the user’s point of view, the GUI consists of four main parts: A list of interfaces,
interface details, a ticker and a command menu. In the main view a list of available
network interfaces, operators offering those and the status indicators of the respective
interfaces (busy, enabled or disabled) are shown. Also the ticker in which common
information, error reports and, most importantly, the currently selected policy rule in use
are highlighted is shown in the main view. The figure 9 presents the functionality of the
GUI as a UML use-case diagram.

Figure 9. The use-cases.

Figure 10. Snapshots from the GUI.

The look-and-feel of the GUI is illustrated in figure 10. The GUI has embedded automatic
guidance, so that the user can easily operate it. For example, if there isn’t any policy rule in
use (when the GUI is started, it automatically inquires the API module whether it is already
using one), it displays a rule selection menu where the user shall select the most convenient
one.

An unsorted list of interfaces is initialized from the policy data XML file, or if it is for
some reason unavailable, the initialization is interpreted from the API module’s interface
state changed messages. Whenever a policy rule is selected, the program sorts the interface
list into a priority order according to the selected policy. Then the sorted list is sent to the
API module. If the highest priority interface is not available, the API module tries to use
the second highest priority on the list and so on. The implementation of the functionality of
the main use-cases is illustrated as a UML sequence diagram shown in figure 11. No class
diagrams are included in this paper for clarity reasons.

The communication with the API module was implemented using sockets. However, due
to the lightweight nature of sockets there was a need to define a communication protocol
so that the both systems had a mutual understanding. The communication protocol defined
the structure and data contents of the messages sent between the GUI and the API module.

In MIDP devices everything is small: The network connection is slow, the processor is
slow and memory is scarce. Because of these constrains, MIDP applications should be
designed to be as small as possible. This implies also to the XML parsing task. Generally,
there are three of kinds XML parsers: model parsers, push parsers and pull parsers. Model
parsers read the entire document and create a representation of the document in memory. A
push parser reads through the entire document and as it encounters the searched parts of
the document, it notifies a listener object. A pull parser reads a little bit of the document at

Operator 1

Operator 1

Operator 2

Operator 2

Operator 2
Operator 1

Operator 3

Operator 3
Operator 3

Operator 1

Operator 3
Operator 1

a time, and the program then requests the next piece. A compact model parser Xparse-J
(Claßen M., 2000) under the GNU Public License was selected to be used in the GUI.

Figure 11. The implementation of the main use-cases.

6. CONCLUSION

In this paper, a prototype implementation integrated with a Mobile IPv6 stack for Linux
able the control the heterogeneous network access in a mobile terminal was presented. The
prototype project participates in the mobility development, so that while roaming from
places to places, the user could retain the best possible network access without
interruptions. Through the prototype GUI, the user can set different policy rules defining
how the specified interfaces should be sorted into a priority order. The API module then
interprets this default policy and performs the interface selection with respect to this policy
through the Mobile IPv6 stack. Moreover, if the selected interface is not available or
becomes unavailable, the system is able to perform a seamless hand-over to the following
available access interface.

Still some issues remain unsolved. For instance, how to store and update the policy data in
a real-life environment, and how to fetch reliable information on the interface
characteristics, require further research efforts.

ACKNOWLEDGEMENT

The R&D Center of Turku Polytechnic and Oy LM Ericsson Ab are gratefully
acknowledged for their financial support.

REFERENCES

Arkko J., Johnson D. and Perkins C. (2003). Mobility support in IPv6. Internet Draft, June 30 2003, IETF.
Claßen M. (2000). Xparse-J XML Parser for Java 1.1, http://www.webreference.com/xml/tools/.
Deering S. and Hinden, R. (1998a). IP Version 6 Addressing Architecture. RFC 2373, IETF.
Deering S. and Hinden, R. (1998b). Internet Protocol, Version 6 (IPv6) Specification. RFC 2460, IETF.
Jokikyyny T., Kauppinen T., Ylitalo J., Tuominen A. and Laine J. (2002). Interface Selection in Simultaneous Multi-

access. Project report (T-106.850), Ericsson Corporate Research & Helsinki University of Technology.
Jokela P., Rinta-aho T., Wall J., Nuorvala V. and Petander H. (2002). Multiaccess. Project report (Tik-106.850), Ericsson

Corporate Research & Helsinki University of Technology.
Perkins C. (1996). IP Mobility Support, RFC 2002, IETF.
Perkins C. (ed.) (2002). IP Mobility Support for IPv4, RFC 3220, IETF.
Tuominen A.J. and Petander H. (2001). MILP Mobile IPv6 for Linux in HUT Campus Network Mediapoli. Proceedings

of Ottawa Linux Sumposium, Canada.
Yavatkar R., Pendalarakis D. and Guerin R. (2000). A Framework for Policy-based Admission Control, RFC 2753, IETF.
Yi-an C. (1995). A Survey White Paper on Mobile IP.

