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Abstract

Finding the contents of a specified region of a plane or space is an important part of many systems
that process spatial data. In many cases, the contents of the region are line segments. In this
report, some data structures are presented that enable fast enumeration of the line segments in a
specified axis-parallel rectangular area. These data structures are interval trees, priority search
trees and segment trees.

1 Introduction

Geometric data plays an important role in many applications that model the real world or objects in it.
In such applications, it is often important to be able to quickly extract the information that describes a
certain region of space. For example, a flight simulator needs to be able to determine which buildings,
roads and terrain features are visible in order to generate a view of the surroundings. A CAD/CAM
system must be able to find the visible parts in a complex design quickly.

Two-dimensional problems of this type also abound. Navigation systems need to be able to show
maps at different levels of magnification and detail. Printed circuit boards contain a multitude of traces
and components.

The most common version of this problem is to find the contents of a rectangular (or in three
dimensions, cuboid) window; this is called a windowing query. Windowing queries are typically
performed on line segments, polygons and curves. In this report, I will describe three data structures
that can be used when performing windowing queries on certain types of line segment data: interval
trees, priority search trees and segment trees.

This report is primarily based on the presentation of these data structures in [2].

2 Windowing for axis-parallel segments

Printed circuit boards usually contain traces that are essentially line segments that are either parallel
to one of the sides of the (rectangular) board or at a 45 degree angle to the sides. This case can be
simplified further by assuming that every line segment is parallel to one of the sides of the board. By
aligning the x and y axes to the sides of the board, the segments become axis-parallel; they are parallel
to either the x axis or the y axis.

The problem, then, is the following:
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Figure 1: An example axis-parallel query

Input A set S of axis-parallel line segments, where n = |S| and a query window W = [x,x′]× [y,y′].

Output The set SW ⊆ S of line segments that intersect W ; in other words, s∈ SW ⇔ s∈ S∧s∩W 6= /0.

An example of a query of this type is shown in Figure 1. The segments s1, . . . ,s8 form S. The
segments highlighted in red (s1, . . . ,s6) form SW .

2.1 Problem analysis

If a line segment s intersects a query window W , one of the following is true:

1. Both the endpoints of s lie in W , which means that s lies entirely within W (for example, s3 in
Figure 1).

2. Exactly one of the endpoints of s lies within W , which means that s intersects the boundary of
W once (e.g. s4) or contains part of an edge of W (e.g. s1).

3. Neither of the endpoints of s is within W , in which case s intersects the boundary of W twice
(e.g. s2) or contains an edge of W (e.g. s5).

Testing for cases 1 and 2 is a matter of finding the k endpoints (of segments in S) in W . This can
be done in O(logn+ k) time and O(n logn/ log logn) storage using a two-dimensional range tree [3].

Case 3 is harder. In this case s and W intersect, but neither of the endpoints of s is in W . Assume
s is horizontal (s = [x1,x2]× [ys,ys]) (the case where s is vertical is similar, but with the x and y axes
swapped). If both endpoints of s are to the left or right of W , s and W obviously do not intersect.
Likewise, they obviously do not intersect if ys < y or ys > y′ (e.g. s7). As neither endpoint is in W ,
x1 ≤ x and x2 ≥ x′ ≥ x. Conversely, if x1 ≤ x≤ x2 and y≤ ys ≤ y′, s and W intersect at point (x,ys) on
the left boundary of W .

In other words, one can find the horizontal segments of case 3 by finding the segments for which:

1. x1 ≤ x≤ x2.

2. y≤ ys ≤ y′.

Vertical segments can, of course, be handled similarly, by switching the roles of the axes.
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2.2 Interval trees

Interval trees (proposed independently by Edelsbrunner [5] and McCreight [7]) can be used to find
segments that satisfy requirement 1. Interval trees are used to answer queries of the following type:

Input A set I = {[x1,x′1], [x2,x′2], . . . , [xn,x′n]} of closed real intervals and a query value q.

Output The set Iq such that i ∈ Iq⇔ i ∈ I∧q ∈ i.

This type of query is known as a stabbing query.
The interval tree T corresponding to (non-empty) I is a binary tree such that:

• mT is the median1 of the 2n interval endpoints.

• The left subtree LT of the tree is the interval tree corresponding to the set of intervals in I for
which both endpoints are less than mT .

• The right subtree RT of the tree is the interval tree corresponding to the set of intervals in I for
which both endpoints are greater than mT .

• The root node of the tree contains the set of intervals I ′T ⊆ I that contain mT as a list sorted in
ascending order on the left endpoint and a list sorted in descending order on the right endpoint.

The interval tree of /0 is an empty leaf.
Constructing T from I can be done by applying the above rules recursively in O(n logn) time. The

resulting tree has O(logn) depth and uses O(n) storage (each interval appears in one node in the tree,
and each internal node contains at least one interval). The query can be performed using the following
algorithm:

QueryIntervalTree(T,q):
if T is a leaf return /0
if q < mT

return {[a,b] ∈ I′T : a≤ q}∪QueryIntervalTree(LT ,q)
else

return {[a,b] ∈ I′T : b≥ q}∪QueryIntervalTree(RT ,q)

At each node the query algorithm spends O(1 + k′) time, where k′ is the amount of intervals
found in I′T to return (the sorted lists allow the relevant intervals to be enumerated from I ′T simply by
iterating through the sorted list until a non-matching element is found). As the algorithm recurses at
most O(logn) times and no interval can be found twice, the total query time is O(logn + k), where k
is the amount of intervals in the result.

As an example, the interval tree for I = {i1, i2, i3, i4} is shown in Figure 2, where i1 = [0,2],
i2 = [4,5], i3 = [1,3], i4 = [5,7]. The empty leaf nodes are not shown. For each node T the median
mT and I′T sorted by ascending left endpoint and descending right endpoint are shown.

If, for example, the tree in Figure 2 is queried for the value 6, the query algorithm starts at the root
node, notes that 6 > 3, notes that 6 /∈ i3 and proceeds into the right subtree where it notes that 6 > 5,
6 ∈ i4 and 6 /∈ i2. Thus, the output is {i4}.

1For the purposes of this report, the median of 2n numbers is the nth-smallest number.
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Figure 2: An example interval tree

2.3 Extending interval trees for windowing queries

The interval tree gives us a good way to find line segments that satisfy requirement 1 in case 3 in the
axis-parallel line segment windowing query problem. However, requirement 2 is not addressed at all.
Instead of returning all intervals in I ′T with the left/right endpoint less/greater than q (as applicable),
only the intervals for which the attached y co-ordinate lies within the y bounds of the window should
be returned. Luckily, this corresponds to the rectangular range query ]−∞,q]× [qy,q′y] on the set of
left/right endpoints in Im, which can be again be solved using a 2D range tree.

Thus, by replacing the two sorted lists in each interval tree node with two 2D range trees on the
left and right endpoints (repectively) of the segments in I ′T and using a query on the corresponding
range tree instead of the sorted list query, the interval tree query can be extended to complete the
windowing query algorithm. The interval tree now uses O(m logm) space instead of O(m) space for
each node containing m segments, so the space requirements increase to O(n logn). Similarly, at each
of the O(logn) nodes traversed during the search, O(logn + k′) time is used (where k′ is the number
of intervals found in each node), so the total time used is O(log2 n+ k).

Based on the above, an algorithm can be constructed to answer windowing queries for axis-parallel
line segments. The algorithm runs in O(log2 n+ k) time and uses O(n logn) storage.

2.4 Priority search trees

The structure for windowing queries described above uses range trees to find line segments that in-
tersect two sides of the window. All of the range tree queries used for this purpose have a range that
is unbounded on one side (the left side, for horizontal line segments). This property can be used to
decrease the space requirements for the windowing data structure (although it is still O(n logn) due to
the range tree used to find endpoints within the window). The specific problem addressed here can be
described as:

Input A set P of points, where n = |P| and a query range R = ]−∞,qx]× [qy,q′y].

Output The set of k points in P that are in R.
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Figure 3: An example priority search tree

A more space-efficient data structure for range queries of the form ]−∞,qx]× [qy,q′y] can be con-
structed from a heap in which the heap condition is that the x co-ordinate of a node is less than that of
the nodes in the subtrees. In a heap, the division into left and right subtrees is arbitrary except that the
subtrees should be (roughly) equal in size. Thus, the nodes can be divided into subtrees in such a way
that a search on the y co-ordinate can be performed quickly.

The priority search tree (proposed by McCreight [8]) T for a non-empty set P of points is a binary
tree with the following properties:

• pT is the point in P with the smallest x co-ordinate.

• PT = P\{pT}.

• mT is the median of the y co-ordinates in PT (if any).

• The root node of the priority search tree contains pT and mT .

• The left subtree is a priority search tree for {(x,y) ∈ PT : y≤ mT}.

• The right subtree is a priority search tree for {(x,y) ∈ PT : y > mT}.

If P = /0, the priority tree is an empty leaf.
Co-ordinates are assumed to be distinct (in other words, no two points may share x or y co-

ordinates). This can be achieved by using the other co-ordinate as a tie-breaker in comparisons2.
An example of a priority search tree is shown in Figure 3. For each node T , pT and (where

applicable) mT is shown.
The priority search tree can easily be built recursively in O(n logn) time (or even in O(n) time, if

the points are already sorted on the y co-ordinate).
The subtrees with y co-ordinate within the search range can be found as in range trees: by search-

ing the tree for qy and q′y and reporting the nodes in the subtrees between the left and right boundaries
formed by these searches. Due to the heap condition, the x co-ordinate grows for every step down into
the tree one takes. Thus, within a subtree in which the y co-ordinate is known to be within the range,
the values with the right x co-ordinate can be found by recursing downwards until the x co-ordinate is
out of range.

The algorithm is thus:

2De Berg et al. [2] refer to using composite numbers, which is exactly the same thing, but they require an entire page to
explain it.
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Figure 4: An example query on a priority search tree

QueryPrioritySearchTree(T,qx,qy,q′y):
Search for qy and q′y in T , storing the search paths as s and s′ respectively.
PR← /0
for T ′ ∈ s∪ s′:

if pT ′ ∈ ]−∞,qx]× [qy,q′y]
PR← PR∪{pT ′}

for T ′ ∈ s\ s′:
if successor in s of T ′ is LT ′ :

PR← PR∪ReportInSubTree(RT ′ ,qx)
for T ′ ∈ s′ \ s:

if successor in s of T ′ is RT ′ :
PR← PR∪ReportInSubTree(LT ′ ,qx)

return PR

ReportInSubTree(T,qx):
if T not a leaf and xPT ≤ qx

return {PT}∪ReportInSubTree(LT ,qx)∪ReportInSubTree(RT ,qx)

The algorithm executes in O(logn+ k) time and uses a tree that requires O(n) storage and can be
built in O(n logn) time.

Figure 4 shows the paths s and s′ used when the query ]−∞,3]× [2,6] is performed on the example
in Figure 3, as well as the nodes for which ReportInSubTree are called (in yellow) and the nodes
whose points belong to the output (in cyan).

3 Windowing for arbitrarily oriented line segments

For applications such as road maps that contain arbitrarily oriented line segments, interval trees are
inadequate. One way to adapt interval trees to this type of application is to replace each segment with
its bounding box (the smallest rectangle with axis-parallel sides that contains the line segment). In
many cases this may be an acceptable solution, but in the worst case, it may test all line segments even
though none intersect the window.

The problem, then, is the same as in Section 2, except that one word has changed:

Input A set S of axis-parallel non-intersecting line segments, where n = |S| and a query window
W = [x,x′]× [y,y′].

Output The set SW ⊆ S of line segments that intersect W ; in other words, s∈ SW ⇔ s∈ S∧s∩W 6= /0.
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The reason for requiring non-intersecting segments will become apparent as the solution to the
problem is explained.

3.1 Problem analysis

As in the previous cases, segments with an endpoint in the window can be reported using a range
tree. To report segments without an endpoint in the window, the segments that intersect a vertical (or
horizontal, which is similar) query segment must be found. In the case where the segments in S do
not intersect, a segment tree can be used for this purpose.

3.2 Segment trees

The interval tree does not provide a satisfactory solution to the problem of windowing queries on ar-
bitrarily oriented line segments. However, it can be replaced with a tree that uses a different approach
to the problem of representing intervals. In other words, segment trees also address the stabbing query
problem described in Subsection 2.2.

The segment tree (developed by Bentley [1]) is based on splitting the real line into ele-
mentary intervals that are bounded by the endpoints of the input intervals. For a set of
endpoint x co-ordinates P = {p1, p2, . . . , pm} (the endpoints of the intervals, sorted in as-
cending order with duplicates removed), the elementary intervals are (from left to right):
]−∞, p1[ , [p1, p1], ]p1, p2[ , [p2, p2], . . . , ]pm−1, pm[ , [pm, pm], ]pm,∞[.

The leaves of a segment tree (from left to right) correspond to the elementary intervals. The
internal nodes of the segment tree correspond to the union of the intervals of their children. Each node
T contains the interval I ′T corresponding to the node and the set IT ⊆ I of intervals i such that I ′T ⊆ i
and I′πT

* i, where πT is the parent of T . In other words, the intervals in I are stored in the highest
nodes that correspond to an interval they contain.

A segment tree is a balanced binary search tree with at most 4n+1 leaves, so its depth is O(logn).
As each interval in I is stored in at most two nodes of the same depth, the storage requirement of the
segment tree is O(n logn).

A segment tree can be constructed by creating a node for each elementary interval and then re-
peatedly combining as many nodes as possible into pairs and forming a new internal node as a parent
for each pair of nodes and finally inserting all the intervals into the resulting tree structures:

CreateSegmentTree(I):
p1, . . . , pm← all endpoints in I (sorted in ascending order, duplicates removed)
Q← empty queue
for each interval i in ]−∞, p1[ , [p1, p1], ]p1, p2[ , [p2, p2], . . . , ]pm−1, pm[ , [pm, pm], ]pm,∞[

Create a node T
I′T ← i
IT ← /0
Add T to end of Q.

while |Q|> 1
Q′← empty queue
while |Q|> 1

Remove T1 and T2 from the beginning of the queue
Create a node T
IT ← /0
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I′T ← I′T1
∪ I′T2

Add T to end of Q′

Add the single element of Q (if any) to end of Q′

Q← Q′

T ← the single element of Q
for every interval i ∈ I

InsertSegmentTree(T, i)
return T

InsertSegmentTree(T, i):
if I′T ⊆ i

IT ← IT ∪{i}
else

if I′LT
∩ i 6= /0

InsertSegmentTree(LT , i)
if I′RT

∩ i 6= /0
InsertSegmentTree(RT , i)

The query algorithm is simple:

QuerySegmentTree(T,qx):
if T is a leaf

return /0
if qx ∈ I′LT

return IT ∪QuerySegmentTree(LT ,qx)
else

return IT ∪QuerySegmentTree(RT ,qx)

Again, the search algorithm uses O(logn+ k) time.
Figure 5 is a segment tree containing the same intervals as the interval tree in Figure 2. For each

node T , I′T and IT are shown.

3.3 Segment trees in windowing

In order to be useful for windowing, segment trees must be adapted to provide efficient searching in
two dimensions. The basic segment tree query described above quickly finds the line segments that
intersect a vertical line at a specified x co-ordinate. Checking that the intersection point is within the
bounds of a vertical line segment (corresponding to the edge of a window) is not hard to add.

Instead of storing the list IT of intervals in each node T , the corresponding segments ST are stored.
Where the algorithm above uses an interval, the x co-ordinate interval of the corresponding segment
is used. The segments in ST each span I′T (but not I′πT

) and do not intersect each other. Thus, their
vertical ordering is the same in all of I ′T . By storing ST as a binary search tree, the lines that intersect
a vertical line segment can be found in O(logn + kT ) time, where kT is the number of intersecting
segments in the BST.

The resulting query algorithm is:

WindowSegmentQuery(T,qx,qy,q′y):
if T is a leaf
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Figure 5: An example segment tree

return /0
if qx ∈ I′LT

return SegmentBSTQuery(ST ,qx,qy,q′y)∪WindowSegmentQuery(LT ,qx,qy,q′y)
else

return SegmentBSTQuery(ST ,qx,qy,q′y)∪WindowSegmentQuery(RT ,qx,qy,q′y)

Here, SegmentBSTQuery(S,qx,qy,q′y) is a one-dimensional query on the interval [qy,q′y] in a bin-
ary search tree, where the y co-ordinate of the intersection point with the query segment at qx must be
calculated for each segment that is tested.

The algorithm runs in O(log2 n+ k) time and uses O(n logn) storage.
Segment trees can be generalised to d dimensions and then use O(n logd−1 n) storage and answer

queries in O(logd n+ k) time. Fractional cascading can be used to lower query time by a logarithmic
factor. Using an interval tree on the deepest level of nested trees lowers the storage bound by a
logarithmic factor.

4 Dynamic windowing data structures

Allowing insertions and deletions of line segments requires changes to the data structures described
here. Cormen et al. [4] describe an interval tree based on a red-black tree that supports insertion and
deletion in O(logn) time. However, their interval tree is designed for a slightly different problem: to
find a single interval in the tree that overlaps a query interval, instead of all intervals in the tree that
contain a query value. It does this in O(logn) time.

Priority search trees can use the insertion and deletion operations of a balanced search trees that
require only O(1) rotations per update (such as red-black trees, described by e.g. Cormen et al. [4]) to
allow insertion and deletion in O(logn) time. [8]

Van Kreveld and Overmars describe a dynamic segment tree that supports insertion in O(logn)
time and deletion in O(logn ·α(i,n)) amortised time, where α(i,n) is the row-inverse of Ackermann’s
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function for a constant i. α(i,n) grows very slowly for i ≥ 2 and can be considered to be a small
constant for any sane value of n. [6]

5 Conclusions

In this report, I presented some data structures and algorithms that can be used to perform windowing
queries efficiently on line segments in a plane.

Using interval trees, windowing queries on axis-parallel line segments in a plane can be performed
using a data structure built in O(n logn) time and using O(n logn) storage in O(log2 n + k) time (re-
gardless of whether the interval trees use range trees or priority search trees, although the priority
search trees are more space-efficient). Using segment trees, the same can be done on non-intersecting
line segments; the time and space requirements are of the same magnitude as in the axis-parallel case.

These data structures allow practical windowing queries for many applications related to spatial
data, such as CAD/CAM, navigation systems and PCB layout.
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