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Software development is prone to time-consuming and expensive errors. Finding and cor-
recting errors in a program (debugging) is usually done by executing the program with
different inputs and examining its intermediate and/or final results (testing). The tools
that are currently available for debugging (debuggers) do not fully make use of poten-
tially useful visualisation and interaction techniques.

This thesis presents a new interactive graphical software testing methodology called visual
testing. A programmer can use a visual testing tool to examine and manipulate a running
program and its data structures.

Systems with techniques applicable to visual testing in the related domains of debugging,
software visualisation and algorithm animation are surveyed. Techniques that are poten-
tially useful to visual testing are described, examined and evaluated, and a design for a
visual testing tool based on these techniques is presented. The tool combines aspects of
user-controlled algorithm simulation, high-level data visualisation and visual debugging,
and allows easier testing, debugging and understanding of software.

A prototype visual testing tool is presented and evaluated here as a proof of concept for
some of the aspects of visual testing. Finally, some suggestions for future research in
visual testing are presented.

Keywords: visual testing, visual debugging, algorithm simulation, algo-
rithm animation, debugging
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Työn nimi suomeksi: Visuaalinen ohjelmistotestaus
Päivämäärä: 7. lokakuuta 2003
Sivuja: 1+x+88
Osasto: Tietotekniikan osasto
Professuuri: T-106 (Ohjelmistotekniikka)
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Ohjelmistojen kehittäminen on altis kalliille ja henkilöaikaa syöville virheille. Virheet et-
sitään yleensä suorittamalla ohjelmaa eri syötteillä ja tarkistamalla tuloksien oikeellisuus,
eli testaamalla. Nykyiset vianetsintäohjelmat eivät riittävästi hyödynnä visualisaatio- ja
vuorovaikutusmenetelmien tarjoamia mahdollisuuksia.

Tässä diplomityössä esitetään uusi vuorovaikutteinen graafinen ohjelmistotestausmene-
telmä nimeltään visuaalinen testaus. Visuaalisen testauksen työkalu tarjoaa ohjelmoijalle
mahdollisuuden tutkia ja manipuloida ohjelmaa ja sen tietorakenteita.

Läheisistä aihealueista (vianetsinnästä, ohjelmistovisualisoinnista ja algoritmianimaatios-
ta) tutkitaan järjestelmiä, jotka tarjoavat hyödyllisiä menetelmiä visuaaliseen testaukseen.
Mahdollisesti hyödylliset tekniikat kuvaillaan, tutkitaan ja arvioidaan. Tämän perusteella
suunnitellaan visuaalinen testaustyökalu, joka yhdistää käyttäjän ohjaaman algoritmisi-
mulaation, korkeatasoisen tiedon visualisoinnin ja visuaalisen vianetsinnän ja tekee tes-
taamisen, vianetsinnän ja ohjelmistojen ymmärtämisen helpommaksi.

Tässä diplomityössä myös esitetään ja arvioidaan prototyyppi visuaalisestä testaustyö-
kalusta, jonka tarkoitus on osoittaa osittain visuaalisen testauksen toimivuutta. Lopuksi
esitetään muutama ehdotus tulevalle visuaalisen testauksen tutkimukselle.

Avainsanat: visuaalinen testaus, visuaalinen vianetsintä, algoritmisimulaa-
tio, algoritmianimaatio, vianetsintä
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Då man utvecklar programvara råkar man ofta ut för fel som tar mycket tid och pengar att
reda ut. Felen spåras och avlägsnas (avlusning eller debugging) vanligen genom att man
utför programmet med olika input och kontrollerar resultaten, vilket kallas testning. De
befintliga avlusningsprogrammen utnyttjar inte till fullo alla möjligheter som visualisering
och interaktion erbjuder.

I detta diplomarbete presenteras ett nytt interaktivt grafiskt testningsförfarande för pro-
gramvara som kallas visuell testning. En programmerare kan med ett verktyg för visuell
testning undersöka och manipulera manipulera ett aktivt program och dess datastrukturer.

I diplomarbetet undersöks system i närliggande områden (avlusning, programvaruvisua-
lisering och algoritmanimation), och potentiellt användbara tekniker som används i des-
sa beskrivs, undersöks och bedöms. På basen av dessa skapas en design för ett visuellt
verktyg för testning av programvara. Detta verktyg kombinerar olika aspekter av använ-
darkontrollerad algoritmsimulation, datavisualisering på hög abstraktionsnivå och visuell
avlusning. Verktyget förenklar testning, avlusning och förståelse av programvara.

En prototyp av det visuella testningsverktyget presenteras och bedöms också i detta arbe-
te. Till slut presenteras några förslag för framtida forskning i visuell testning.

Nyckelord: visuell testning, visuell avlusning, algoritmsimulation, algorit-
manimation, avlusning
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Terminology

This section defines some terminology that is used in this thesis.

• Debugging:

Debugging Examining a program in order to find and eliminate errors.

Debuggee The program that is being examined in debugging.

Debugger A program used in debugging to examine and affect what the debuggee
is doing.

• Software visualisation:

Visualisation Graphical representation of information.

Algorithm animation Algorithm visualisation using visualisations of its data struc-
tures at sequential time steps that can be traversed backwards or forwards.
Sometimes referred to as discrete animation, as opposed to continuous or smooth
animation, in which graphical objects move smoothly from one place to an-
other.

Algorithm simulation Allowing the user to manipulate a data structure himself as if
he were the algorithm. Also called user controlled simulation of an algorithm.

• Non-object-oriented programming:

Record/struct A set of fields.

Field A named variable belonging to a record or struct.

Procedure/function A named sequence of instructions that may take input parame-
ters and may return a value.1

• Object-oriented programming:

Object A set of fields and methods; an instance of a class.

Field A named variable belonging to an object.

Variable A memory location that can contain a value.

Class A definition of a type of object. The fields and methods of all instances of
a class are specified in the class. A class may be a subclass of another class
(its superclass), in which case all instances of the subclass are instances of the
superclass. A subclass inherits the methods and fields of its superclass. The
inherited methods may be overridden in the subclass. Some languages may
allow a class to have multiple superclasses.

Method A procedure associated with a class or object.

Method invocation The act of executing a method.
1The terms “procedure” and “function” mean slightly different things in different languages. Pascal procedures

do not return a value, while functions do. In C, both are considered functions.
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Local variable A named variable belonging to a method invocation.

Array A data structure that contains zero or more variables that are indexed by
number.

• Virtual machines:

VM (Virtual Machine) A computing device simulated in software.

JVM (Java Virtual Machine) A VM that executes bytecode, as defined in [36].
Bytecode is usually generated by compiling programs written in Java, which
is defined in [21].

• Data types (defined more precisely and in more detail in [30]):

ADT (Abstract Data Type) A set of operations with defined semantics. This cor-
responds roughly to the specification of an interface in an object-oriented pro-
gram.

CDT (Conceptual Data Type) An implementation of an ADT in a programming
language.

FDT (Fundamental Data Type) The static part of a CDT in which all data types
are generic (i.e. the types of the values stored in the FDT are irrelevant).



Chapter 1

Introduction

As software has grown more complex, the amount of errors in it, known as bugs, has in-
creased. Market pressures can further compound this problem by causing a project to be
developed with unskilled programmers or insufficient time or money. It is estimated that
software errors lead to costs of tens of milliards of euros every year. [49]

Bugs are essentially a difference between the intended behaviour of the program and
its actual behaviour. Thus, one way to find and eliminate bugs (an activity known as debug-
ging) is to examine the operation of the program and compare this to the desired operation.
This approach is called testing. Tools that assist in debugging by allowing programmers
to examine the current state of a program (which includes the data the program is work-
ing with in memory and the currently executing code) and control its execution are called
debuggers.

Current debuggers have several limitations. As they generally show data by display-
ing the values of individual variables, it is often hard to see the interesting aspects of the
running program and its data. Object-oriented development has allowed programmers to
hide unnecessary detail while developing, but debuggers generally do not take advantage
of this. Furthermore, it is difficult to test results of operations in the program without writ-
ing additional code that runs parts of the program and examines the results. Also, when a
problem is found, its cause is often lost in the past, which necessitates careful rerunning
and stepping through the program to find the cause of the problem.

In order to teach students algorithms better, many universities have developed algo-
rithm animation tools that display the execution of algorithms as a sequence of graphical
representations of a data structure. Algorithm animation can also be used in conjunction
with user-controlled algorithm simulation. Algorithm simulation allows students to exam-
ine the behaviour of algorithms by specifying the operations to perform and watching the
results. Usually, the algorithm simulation tool provides a graphical user interface (GUI)
that shows the data structures and allows the user to perform operations on them (such as
adding or modifying data) using common GUI input techniques such as clicking or drag-
ging and dropping.

Algorithm animation and simulation tools provide a way of visualising data structures
that makes the relevant data easier to find and comprehend and a simple mechanism for
controlling operations on these data structures. User-controlled algorithm simulation is con-
ceptually quite similar to testing, which suggests that some techniques used in algorithm
simulation can be applied to testing.

1.1 Goal
It seems that an unfulfilled need for a better way to examine and test software exists. Specif-
ically, something is needed to aid in the following tasks:

1
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• Testing code to see if it works and identifying the faults if it doesn’t.

• Studying code to understand what it does and how it works.

1.2 Proposed solution
The solution presented here to the problem of testing and examining programs is visual test-
ing, in which the visualisation and control techniques of algorithm simulation are applied
to the problem of testing software. The programmer using visual testing should be able
to examine the operation of a program visually without being bogged down with imple-
mentation details. He should also be able to choose which parts of the program to execute
and manipulate the data to be processed by the executing program. The visual testing tool
should interact with its users through a graphical user interface.

1.3 Thesis outline
The following issues are addressed in this thesis:

• The desired properties of a visual testing tool (Chapter 2).

• A survey and evaluation of debugging and software visualisation tools that can be
used for visual testing (Chapter 3).

• Descriptions and evaluations of visualisation (Chapter 4), elision and abstraction
(Chapter 5) and control techniques (Chapter 6) suitable for visual testing.

• Different approaches to the implementation of a visual testing tool (Chapter 7).

• The design of a fully fledged visual testing tool (in Chapter 8).

• The design and implementation of a prototype visual testing tool that demonstrates
the feasibility of the visual testing concept and the new techniques applied in it (in
Chapters 8 and 9).

• Some use cases that can be used to demonstrate and evaluate the prototype visual
testing tool (Chapter 10).

• An evaluation of the prototype (Chapter 11).

• Conclusions and suggestions for future studies (Chapter 12).



Chapter 2

Objectives

The goal of a visual testing tool is to provide programmers with the ability to examine what
their program does interactively, by allowing monitoring and manipulation of program ex-
ecution and data. This allows the programmer to try out the results of manipulating objects
and executing methods.

2.1 Criteria
The goal of a visual testing tool can be split into the following criteria:

Generality The testing tool should work on programs not specifically designed or written
for visualisation; in other words, the user should not need to change his programs
to use the tool with them. Ideally, any program can be examined. This criterion cor-
responds to requiring generality and scalability (both parts of scope) as defined by
Price et al. in their taxonomy of software visualisation [46]. Lack of generality usu-
ally means that programs must be rewritten to fit the tool. However, dissimilar pro-
gramming languages require different visualisation strategies, so it is unrealistic and
not very useful to be able to use the same tool on programs written in completely
different languages.

Completeness All aspects of the running program should be accessible for examination.
In most object-oriented languages this encompasses:

• An execution stack or call stack for each execution thread, which typically con-
tains information on the currently active method invocations and their local
variables.

• All objects and variables.

• Code and current execution position.

This corresponds to fidelity and completeness in the Price et al. taxonomy.

Data modification Variable values should be freely modifiable where allowed by the pro-
gramming language. Software visualisation does not usually address this aspect, al-
though it is common in debuggers.

Execution control The user should be able to try out any part of the program on data of
his choice and execute operations of his choice on the data in the running program.
Ideally, the user should be able to control what is executed down to individual op-
erations and create and modify classes and methods on the fly. Being able to invoke
methods at will is the most important part of execution control. Control of this type
is a fundamental part of algorithm simulation.

3
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Presentation Ideally, the testing tool would automatically present exactly what the user
wants to know about the program, its execution and its data in the form in which he
thinks about these matters. The data should be represented in such a way that the user
can easily find the information he requires, and the information is expressed clearly.
Visual representation is clearly the most effective way of conveying this information
in practice, although visual information can be augmented with sound or information
for any other sense. Finding a visual representation that meets these requirements
is one of the main problems in constructing a visual testing tool. In practice, this
includes:

Representation The data must be shown in a suitable (graphical) form.

Abstraction Unnecessary implementation details should be abstracted away when-
ever it is possible and the user desires it. Implementation details that were hid-
den from the user during programming that he does not care about should also
be hidden while debugging (one aspect of appropriateness and clarity in Price
et al.).

Automatic view control The tool should guess at what the user wishes to see and
present the data in this form (another aspect of appropriateness and clarity in
Price et al.).

Manual view control The user should be able to change the view easily to match
his own ideas by hiding (eliding) parts of the view and changing the way in
which information is represented (navigation in Price et al.).

The mapping between the data in the running program and the visualisation should
work both ways; if the user modifies data in the graphical view, the corresponding
change should be made to the data in the debuggee.

Causal understanding It should be easy to understand the reason for the current state
of the program. Ideally, we could ask the computer something like “Why is this
reference null?”, and it would answer, for example, “Because you put these two
statements in the wrong order.”. In order to do this, the computer would have to
understand what was expected of it and be able to write correct code, which would
defeat the purpose of having an interactive testing tool. Therefore, a more realistic
goal must be set.

A more realistic goal is that the user should be able to examine the entire execution
history of the program (or at least selected interesting parts of it) and search through
it for the instructions, instruction sequences or events that caused a specified change
to the state of the program or caused it to differ from the expected state. This is the
approach taken by algorithm animation.

2.2 Scope
Designing and writing a visual testing tool that provides all features that could possibly be
useful for the testing, debugging or examination of any program written in any language is
a very large undertaking. Therefore, the scope of this thesis must be a carefully bounded
small subset of the area of visual testing.

2.2.1 Target language
Object-oriented languages are especially well suited to working at high abstraction levels,
as they provide many mechanisms for encapsulation and abstraction. Many languages that
are in heavy use today are object-oriented, such as Java and C++. Because of these two
factors, this thesis will focus on object-oriented languages.
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The prototype is designed to process programs written in Java (described in [21]), be-
cause:

• Java is highly portable, as Java software can be run on any platform with a JVM.
This makes the results more widely applicable.

• Java is object-oriented, which encourages programmers to write code at a higher
abstraction level and with more modularity than in e.g. C. This makes it easier to
construct visualisations of a program similar to the concepts in a programmer’s mind.

• Java is widely used:

– A lot of software has been written in Java.

– Java is often used to teach programming.

– Programmers with Java skills are highly sought after [76, 79].

This means that a wide range of software is available and being written in Java that
can be used with the results of this work.

• Java is considerably less complex than C++. This simplifies the design a lot.

In matters that are not specific to Java, generalisation to other similar languages is also
discussed here.

2.2.2 Solution types to consider
The solutions to the problems posed in the introduction will be based on techniques from
existing debugging, software visualisation and algorithm animation and simulation soft-
ware, whenever these techniques can be adapted to suit visual testing.

Techniques that seem to provide little extra comprehensibility but require a lot of extra
work, such as smooth animation, sound or three-dimensional visualisation, will also be left
out of consideration. This work will concentrate on ways to visualise the data structures
and execution flow of a running program using two-dimensional graphics and interact with
the running program.

2.2.3 Prototype
In order to examine how well visual testing works in practice, a working implementation
should be made. However, features that are not essential to visual testing can be left out,
especially if other software already provides similar functionality. This prototype should
allow examination of programs written in Java. If possible, existing software (debuggers,
visualisers or similar tools) will be used as a basis for the prototype.



Chapter 3

Related work

Software visualisation can be divided into three categories based on the purpose of the
visualisation and the approaches used:

• Visual debugging.

• Program visualisation.

• Algorithm animation and simulation.

The program visualisation and debugging approaches are based on the idea of taking a run-
ning program, stepping through it and showing the variables and other interesting parts of
the state of the executing program. This shows what the program is doing. Program visu-
alisation is used to understand a program, while debugging involves finding and correcting
errors in a program. Program visualisation and debugging can be done using similar tech-
niques and in some cases both may be combined in a single tool (e.g. Lens [37, 38] and
Leonardo [23]).

The algorithm animation approach is based on showing a series of graphical represen-
tations of a data structure at successive points in time in order to explain how an algorithm
operates on the data structure. Many algorithm animation systems allow the user to step
back and forth through the states of the data structure and algorithm to study the progress
of the algorithm. User-controlled algorithm simulation gives the user the ability to manip-
ulate the data structures himself.

In this chapter, debugging and program visualisation systems designed for procedural
languages (with or without object-orientation) such as C, C++, Pascal and Java are sur-
veyed. Debuggers and program visualisers for other languages are only included if they
have features or properties that may be of use in visual testing; visualising the execution
and data structures of programs written in e.g. Prolog or Lisp is an entirely different prob-
lem due to the different execution and data models used in these languages. Also, the most
important general-purpose algorithm animation and simulation tools are described.

3.1 Debugging
Debuggers are intended to be used to find bugs in programs by tracing through the exe-
cution of program and examining and editing variable values. Most debuggers have some
execution control facilities (e.g. single step, breakpoints, watchpoints and expression eval-
uation) and some way to view variable values.

Most debuggers are based on ideas from FLIT (Flexowriter Interrogation Tape), which
introduced symbolic debugging (meaning that the user could work with variable names,
labels and instruction mnemonics instead of memory addresses and numerical instruction
codes) and breakpoints [55]. More than 40 years later, most current debuggers are based

6
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on the same paradigm: run the program to a specified point, stop it and examine the values
of the variables. A few improvements have been made, such as single stepping. These
debuggers can be referred to as command line debuggers (referring to their user interface)
or traditional debuggers (referring to their heritage).

The most common style of debugger today is a traditional debugger with a graphical
user interface. Most integrated development environments (development software packages
containing an editor, a compiler and linker and a debugger within a common user interface),
such as Borland JBuilder and Microsoft Visual Studio, contain a debugger of this type [72,
80]. Debuggers of this type are referred to by their authors as “visual debuggers” (e.g.
the Javix Visual Debugger [68] or the Tango/04 VISUAL Debugger [78]) or “graphical
debuggers” (e.g. KDbg [75] or JSwat [66]). To avoid confusion, I will refer to debuggers
of this type as graphical debuggers. These debuggers have few interesting features from a
visual testing viewpoint and are too numerous to survey properly. For these reasons, they
are not included here unless they have other features that merit attention.

During the last two decades, visualisation features have been developed for debugging
tools. Two approaches to visualisation in debuggers can be discerned. The simpler ap-
proach is to allow the user to select concrete data structures to be displayed and display
the primitive values in them and references between them without any attempt to interpret
the meaning of the data. This approach is used by most debuggers intended for develop-
ment use (e.g. DDD [63] and GVD [67]) and those intended for novice programmers (e.g.
Amethyst [39]). The other approach allows the user to create visualisations for his program
by constructing animations using predefined primitives and the variables in the program.
This allows the user to view his data at a higher level of abstraction, but also requires more
work to get the desired view. This approach is also sometimes used in program visualisa-
tion, which makes it hard to classify some of the programs that use it (e.g. Lens [37, 38]).
Debuggers that use software visualisation techniques are generally called visual debuggers
although they are also sometimes confusingly referred to as “graphical debuggers”.

BlueJ [27] is not quite a debugger; it is primarily a development and testing tool, al-
though it also has debugging features. It is included here because of its interesting approach
to testing.

In the following, each surveyed debugger is briefly presented.

3.1.1 DDD
DDD (Data Display Debugger) [62, 63] is a visual debugger that provides extensive de-
bugging facilities and some (low-level) data structure visualisation, mostly limited to dis-
playing structs or classes as boxes with pointers shown as arrows between them, as well as
plotting array data using the plotting program gnuplot. DDD makes use of a command line
debugger, such as GDB or JDB, to debug programs written in a variety of languages, such
as C, C++, Java, Pascal, FORTRAN, Python and Perl.

GVD (GNU Visual Debugger) [67] has a similar feature set and user interface.

3.1.2 RetroVue
RetroVue [14, 81] by VisiComp allows the user to browse the execution history of an exe-
cuting Java program by watching it execute (either in real time or from a log), by stepping
backwards or forwards through the logged states or by searching for specific events. The
state of the program is shown using the following views:

• A thread view that shows the state of the different threads (running, runnable, blocked,
et.c.) as a function of elapsed time. Locking and deadlocks are clearly indicated.

• The execution history of the program (as a tree structure of nested method calls and
statements).
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• A tree view of the static structure of the program (classes, fields, methods, et.c.).

• A tree-structured data view based on showing the local variables and expanding
branches representing references to other objects.

RetroVue is thus essentially a graphical debugger with the ability to step back and forth
through the execution history of a program or examine the history as a tree.

3.1.3 ODB
Like RetroVue, ODB (the “Omniscient Debugger”) [35] collects information about the
operations performed by an executing Java program and allows the programmer to exam-
ine the execution history. Like RetroVue, ODB supports stepping backwards and forwards
through the execution history. Unlike RetroVue, ODB allows the user to interrupt the run-
ning program and execute methods and modify data values in a secondary timeline that
starts from a copy of a state of the real execution history. The main timeline containing the
real execution of the program may not be modified.

ODB shows the threads in the program, their stack, the tree of executed methods and a
treelike view of selected objects and objects they refer to.

3.1.4 Amethyst
The Amethyst visual debugger [39] displays call stacks, variables, arrays and records graph-
ically for a running Pascal program. Records and arrays are displayed as nested boxes. Heap
objects and pointers are not supported. Amethyst also provides graphical control over step-
ping and breakpoints.

3.1.5 Lens
The Lens visual debugger [37, 38] is an attempt to bridge the gap between program vi-
sualisation and algorithm animation. It is based on the XTango animation system and the
dbx command line debugger, and allows the construction of animations based on data in
programs. The user constructs an animation by creating graphical objects (lines, rectan-
gles, text and object arrays, for instance) and adding animation commands that affect these
objects to the source code, such as “move”, “colour” or “delete”. The actions are defined
using a graphical editor. Lens has some limited execution control facilities and allows the
user to access the underlying debugger directly.

Getting a high-level visualisation out of Lens requires quite a lot of extra work, as you
essentially have to design the visualisation yourself. The additional programming required
to produce a visualisation discourages programmers from using Lens. [24]

3.1.6 BlueJ
BlueJ [27] is an integrated development environment for Java designed for use in intro-
ductory programming courses. BlueJ displays the structure of a Java program in a fashion
similar to a UML class diagram, and allows the user to graphically instantiate objects and
execute methods. BlueJ allows the user to inspect values of variables, but it does not pro-
vide any data visualisation beyond a simple graphical debugger, which supports stepping,
breakpoints and can shows lists of local variables, fields of an object or class and currently
active methods.
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3.2 Program visualisation
The purpose of program visualisation is primarily educational. The goal is usually to help
the user understand or explain to others how a program works. Most of these systems are
targetted at teaching basic programming (especially Eliot [58], its successor Jeliot [22] and
the system designed by Korsh, LaFollette and Sangwan [32, 33, 50]), while others are (also)
intended to help programmers understand what a program is doing (e.g. VisiVue [81] and
Prosasim [73]).

While debuggers are traditionally based on stopping program execution and examining
the state of the program, program visualisation systems use a greater variety of approaches
to extracting information from a running program. Some require that the user add visuali-
sation commands to their program (e.g. Leonardo [16]), while others automatically add vi-
sualisation code to the user’s program using a modified compiler or additional precompiler
(e.g. Eliot [58] and Jeliot [22], VCC [5] and UWPI [23]). Finally, some use debugger-style
examination of running programs (e.g. VisiVue [81]).

While most program visualisers use a finished program (possibly with graphics calls
added) as input, Prosasim [73] is based on simulating a system described as a UML model.

Program visualisers with no features relevant to visual testing that cannot be found in
other program visualisers have been left out. These include the system described by Rasala
in [47]. Systems that only visualise source code or other static structures, such as Source-
Navigator [77] are not included here.

3.2.1 Jeliot
The Eliot [58] and Jeliot [22] program visualisers display the data structures of an executing
program (at quite a low level; primitives, arrays, stacks and queues) with smooth animation
by instrumenting the code on compilation. Jeliot is used as a client/server program over
the web; the client supplies source code in EJava (a modified version of Java with added
stack and queue types and some limitations), which the server precompiles to Java (adding
animation code in the process) and compiles into an animation applet. Eliot uses C and
C++ instead of Java and is not designed for use over WWW. Eliot also works with low-
level built-in data types such as integers, arrays and trees.

3.2.2 VCC
The VCC [5] system adds animation features to C programs using a modified compiler that
adds animation code. VCC shows the currently active function (with arguments and local
variables), the tree of executed program calls, the program code, standard I/O and separate
data views for records (structs) and arrays. However, VCC does not visualise dynamic
(heap-allocated) structures.

3.2.3 UWPI
The UWPI [23] system is based on a specialised Pascal compiler that adds data visualisation
that attempts to recognise known idioms (common data structure operations) and from this
recognise abstract data structures for visualisation such as Boolean or reference variables.

3.2.4 Korsh-LaFollette-Sangwan
The system designed by Korsh, LaFollette and Sangwan [32, 33, 50] is essentially a data
visualisation and animation system for C/C++ programs based on modified data types with
overloaded operators containing animation calls. It displays the code, heap, call stack, local
variables, arguments and operations being performed. The system is intended for use in
basic programming courses and therefore only handles integers, structs and pointers.



CHAPTER 3. RELATED WORK 10

3.2.5 Prosasim
Prosasim [73] takes an executable UML model of a program built using the Prosa modeller
and simulates its execution. The model can then be visualised using the UML diagrams
(e.g. collaboration diagrams) in the model. The values of attributes in the model can also
be examined. Using the Prosaj or Prosacpp code generators, this model can be converted
into an executable model in Java, C or C++.

3.2.6 Leonardo
The Leonardo [16] software visualisation environment allows the user to edit, compile,
execute and animate C programs. It uses a virtual processor to provide debugging facili-
ties including reverse execution. Graphical interpretations are specified using declararations
written in the logic programming language Alpha embedded in the C program as comments.
Using Alpha, the programmer can construct many types of visualisations containing geo-
metric primitives or graphs. However, Leonardo is hard to classify, as it combines aspects
of emulation, debugging and program visualisation.

3.2.7 VisiVue
VisiVue [81] by VisiComp visualises and animates objects in an executing Java program.
The animation is done while the program executes, with highlighting to indicate the cur-
rently executing statement. It also produces textual execution trace logs.

3.2.8 Pavane
Pavane [48] visualises the state of a program written in Swarm, consisting of a set of tran-
sition rules and a defined initial state to which the rules are applied. Pavane uses declarative
visualisation; a mapping between the program and a world of 3D geometric objects is de-
fined as a set of rules.

3.2.9 DynaLab
DynaLab [9] consists of a virtual machine connected to a simple program animator that
displays the current execution position in the source code, the currently active procedures
and their local variables textually. The virtual machine is capable of reverse execution.
Compilers for DynaLab’s virtual machine exist for Pascal, Ada, C and C++. Only the Pascal
compiler has been completed and released.

3.2.10 Tarraingím
Tarraingím [40] visualises programs written in the object-oriented programming language
Self. Besides displaying the actual data contents of objects, Tarraingím can display objects
graphically at a higher level of abstraction using view code written to monitor and access
objects through their interfaces.

3.2.11 JAVAVIS
JAVAVIS [43] visualises the current state of a Java program as a set of UML object diagrams
(one for every active method invocation) containing the local variables of the method and
all objects reachable from these local variables by following references. JAVAVIS also vi-
sualises the executed method calls of a Java program as a sequence diagram.
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3.3 Algorithm animation and simulation
Most algorithm animation and simulation tools are designed for the teaching of algorithms
and data structures. Their purpose is twofold: to make it easier for teachers to show their
students what an algorithm does (Balsa-II and Zeus emphasise this application [10, 11]),
and to allow the student to experiment with data structures and algorithms (Matrix and
JDSL emphasise this area [6, 29, 31]). Algorithm animation tools designed for students’
use often automatically visualise data structures that conform to a predefined interface,
while those designed for teachers’ needs usually require the user to add explicit graphics
calls.

This survey does not include graphics libraries that only provide geometric primitives
and animation, such as XTango [52] and Polka [54]. These libraries leave most of the hard
work of constructing a visualisation to the user. Animation tools that only work with ge-
ometric primitives, such as ANIM [8] and Samba [53] and its derivatives, have been left
out for similar reasons. Systems superseded by newer systems by the same authors, such as
Balsa [13] and WWW-TRAKLA [28], have also been left out. Algorithm animation sys-
tems designed for a few specific algorithms or a small class of algorithms (e.g. geometric
algorithms) have been left out of consideration due to their amount and limited applicabil-
ity. A wide range of specialised algorithm animation tools can be found at [65].

3.3.1 Matrix
The Matrix [29, 31] system provides animation (including stepping both backwards and
forwards) and user-controlled simulation of data structures written to conform to specified
interfaces. Unlike the other systems described here, Matrix allows hierarchical composition
of types. Matrix supersedes the old Trakla system, which was limited to user-controlled
simulation of a few built-in data structures.

3.3.2 JDSL
The JDSL Visualizer [6] provides animation and visualisation of data structures written to
conform to specified interfaces (those of the JDSL data structure library). By default, it
shows the data structure before and after API calls, but additional animation frames can be
generated by adding calls to the visualiser. The JDSL Visualizer allows the user to select
methods and their arguments and execute the methods (as defined by the user) on the data
structures. JDSL shows the history of events that have happened to the data structure and
the current state of the data structure.

3.3.3 Balsa-II
The Balsa-II [10] system is an algorithm animation tool. It animates algorithms written in
Pascal with explicitly added display calls and conforming to a specified interface. The al-
gorithm outputs change events through an adapter to a modeller, which maintains a generic
data model that can be used by several viewers, which display the data in the model.

3.3.4 Zeus
The Zeus [11] algorithm animation system is similar to the authors’ previous system, Balsa-
II, but adds support for allowing the user to generate events with specified arguments (sim-
ilar to calling methods). Zeus works with Modula-2 code.
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3.3.5 AlgAE
AlgAE [61] animates algorithms that are implemented in Java or C++ conforming to the
visualiser’s interfaces. The algorithms must be annotated with explicit visualiser calls. Al-
gAE also provides a graphical user interface with which the user can invoke algorithms on
a data structure. The visualisation consists of boxes that can contain text, other boxes and
links or arrows to other objects. AlgAE does not appear to support moving back and forth
through the execution of the algorithm.

3.3.6 World-wide algorithm animation
The World-wide algorithm animation [25] system (hereinafter WWAA) is designed to al-
low students to manipulate (through a web browser) algorithm implementations written
in Pascal (with lots of calls to the animation system) running on a server. WWAA allows
users to step through an algorithm implementation or run it to the end or a breakpoint and
view and modify variable values. It can also forward bitmap images containing graphical
representations of data structures.

3.3.7 JAWAA
JAWAA [44] executes animation scripts generated by a program to which animation output
commands have been manually added. The animation can include primitive graphical ob-
jects such as lines, text and rectangles as well as arrays, stacks, queues, graphs and trees.
Once the animation script has been created, the user can run or step forward through the
animations.

3.3.8 JCAT
JCAT [12] animates algorithms written in Java annotated with visualiser calls. The visu-
aliser calls are passed to a view applet designed for a specific data structure or algorithm.
The view applet uses an animation package based on a graph containing vertices that can
be connected with edges and moved to different positions smoothly. The vertices can have
various graphical properties such as a textual label, a polygonal outline or colour.

3.3.9 JIVE
JIVE [70] animates algorithms written in Java using a set of pre-written data structures with
animation hooks. The data structures supported by JIVE include graphs, binary trees, lists
and hash tables. The algorithm can request user input, such as selecting a graph vertex or
entering a number. JIVE also allows the user to manipulate the data structures graphically.

3.4 Evaluation
I have evaluated tools for suitability for visual testing by checking how well they meet
the criteria mentioned in this section. The evaluation results use the notation defined in
Table 3.1.

In order to evaluate the previously done work in this area, I compare the systems against
the requirements listed in section 2.1. The results of this comparison are shown in Table 3.2.

3.5 Analysis
This section summarises the survey results and describes some commonalities in the sur-
veyed tools.
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Score Meaning
- The system does not meet the criterion at all; the system has no func-

tionality of this type.
p The system meets the criterion partially; the system has some limited

functionality of this type that may be occasionally useful.
pp The system meets the criterion well enough for basic use; the system

provides functionality of this type that is usually sufficient.
ppp The system meets the criterion very well; the system provides excellent

functionality of this type that handles even complex cases well.

Table 3.1: Scoring system for evaluation of tools
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DDD ppp ppp pp pp pp - p pp p

RetroVue ppp ppp - p p - - pp ppp

ODB ppp ppp pp p p p - pp ppp

Amethyst pp p p pp pp - p - -
Lens ppp ppp p p pp pp - pp p

BlueJ ppp ppp p ppp p p - pp -
Jeliot pp p - p pp p - pp -
VCC ppp p - p pp p pp p p

UWPI p p - - pp pp pp - -
Korsh et al. pp p - p pp pp pp - -
Prosasim p pp ppp ppp ppp p pp pp p

Leonardo pp pp - p ppp ppp - pp pp

VisiVue ppp p - p pp - pp p -
Pavane p pp - p ppp ppp - ppp -
DynaLab pp pp - pp p - pp - pp

Tarraingím p pp p p ppp ppp pp ppp -
JAVAVIS ppp pp - p pp - pp p -
Matrix p p pp pp ppp pp pp pp pp

JDSL p p pp pp pp pp pp - pp

Balsa-II p p - p pp pp pp pp p

Zeus p p - pp pp pp pp pp p

AlgAE p p - pp pp pp - pp -
WWAA p p pp pp pp pp - pp -
JAWAA pp pp - p pp pp - ppp -
JCAT pp pp p pp pp pp - ppp -
JIVE p p pp pp pp pp pp pp -

Table 3.2: Evaluation of previous work
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3.5.1 Traditional grouping
The common properties of the tools in each group and the differences between them are
described in this subsection.

Debugging

In general, debuggers concentrate on generality, completeness and data modification. Exe-
cution control in debuggers is often limited to placing breakpoints and stepping (Retrovue,
ODB and Lens), but some allow the user to invoke methods, functions or similar constructs
(DDD, Amethyst, BlueJ).

RetroVue, ODB and BlueJ show data structures using techniques from (non-visual)
graphical debuggers; they do not provide data structure visualisation. They are included
here because of other interesting features; RetroVue and ODB are designed to address
the problem of causal understanding, while BlueJ provides a new form of object-oriented
execution control. In contrast, DDD, Lens and Amethyst all provide simple low-level visu-
alisations.

Program visualisation

Program visualisation tools generally concentrate on presentation, although some (e.g.
Leonardo) handle most of the other aspects as well. Most of these systems place much
of the burden of extracting relevant information on the user (for example, Leonardo of-
ten requires extensive visualisation declarations to produce visualisations, even though the
original code can be left mostly unmodified), while others ignore this problem entirely and
display data structures at a very low level (e.g. Jeliot). Some program visualisers concen-
trate on displaying only specific types of data stored in variables (e.g. Jeliot, UWPI) or
only objects (VisiVue). VCC and the system by Korsh et al. limit their support for prim-
itives to integers, but support arrays, structs and pointers. Program visualisers often place
more constraints on the program to visualise than debuggers, such as requiring programs to
be written in modified versions of a common programming language (Jeliot, VCC, Korsh
et al.), for a limited environment (Leonardo), in a limited subset of a language (UWPI)
or in a specialised language (e.g. Pavane). In short, program visualisation tools usually
concentrate on visualising a particular aspect of a program, and usually require more user
intervention to produce a visualisation than a visual debugger.

Prosasim is a bit of an odd man out, as it relies heavily on programs being written
using the Prosa modeller. However, this means that the program can be both written and
debugged using the same representations and metaphors.

Algorithm animation

Algorithm animation systems generally concentrate on presentation, abstraction and/or
causal understanding. User-controlled algorithm simulation adds extensive execution con-
trol and data modification abilities to this.

The algorithm animation systems mentioned here can be used to visualise data struc-
tures in user programs, but extensive writing of code to map the data to the data types
supported by the system is usually necessary. Matrix has greater expressiveness in its data
structure representations than the other algorithm animation systems thanks to its ability to
form nested structures inside other structures. When using most of the algorithm animation
tools, the user must extensively modify his program to conform to an interface that can be
visualised.

Some algoritm animation tools (e.g. Matrix and JDSL) also support algorithm simula-
tion, which allows data structures to be modified according to data structure-specific rules.
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3.5.2 Grouping by data extraction approach and code preprocessing
From the point of view of visual testing, the difference between algorithm animation, pro-
gram visualisation and visual debugging is quite small. One of the most important questions
is “How much do I have to modify or annotate my program to visualise it?”. The generality
value shown in Table 3.2 reflects this, as the amount of changes that must be made to a
program depends on the requirements placed by the visualisation system on the program.
The requirements in turn depend on the approaches used to define the visualisation and
monitor the state of the program.

The surveyed visual debuggers (with the exception of Amethyst, which only supports a
subset of Pascal) can visualise every important aspect of practically any program written in
at least one common programming language and therefore have very good (ppp) generality
and completeness. The visual debuggers based on taking snapshots of data at breakpoints
(DDD, Amethyst, BlueJ and Lens) have very limited support for examining the execution
history of a program, which implies limited (- or p) causal understanding. However, debug-
gers based on automatic instrumentation of Java bytecode (RetroVue and ODB) can record
the execution history of a program and allow the user to examine it in many ways, which is
very good (ppp) for causal understanding.

Most algorithm animation and simulation tools require that a program be written to
conform to their data structure or algorithm interfaces or use their predefined data struc-
tures. Rewriting a large program to conform to these interfaces can be laborious and may
result in even more bugs to track down, especially if the data structures used by the visual-
isation differ significantly from those in the program to be visualised. Similarly, no aspects
of the program’s function other than those explictly defined in the predefined data struc-
tures or interfaces are visualised. These systems therefore have only limited (p) generality
and completeness. JCAT and JAWAA only require visualisation calls or output commands
to be added, which removes the need for restructuring and allows information that is not
stored in a suitable data structure to be visualised. This increases the generality and com-
pleteness to a sufficient level for basic use (pp). All of these data collection techniques allow
logging of execution history, but only a few of the systems actually implement this (Matrix
and JDSL have a general logging facility, while Balsa-II and Zeus can provide specialised
history views in some cases).

The program visualisers have the greatest variety of approaches to defining the visuali-
sation and monitoring the program. VCC, VisiVue and JAVAVIS require almost no manual
intervention to visualise almost any program written in the right language and therefore
have very high (ppp) generality. UWPI only supports a small subset of Pascal, which limits
(p) its generality. Jeliot does not require manual modifications, but it can only visualise sim-
ple programs without modifications due to implementation limitations, which decreases its
generality somewhat (pp). Leonardo and DynaLab use virtual machines and special compil-
ers that lack some commonly used features that are available in many of the environments
for which software is written, such as networking, which decreases their generality rating
similarly (pp). Tarraingím, Pavane and Prosasim rely on special features of unusual pro-
gramming languages, meaning that most programs will have to be rewritten completely to
be used with these tools, which means that they have very little generality (p). The system by
Korsh et al. relies on using specialised data types, like most algorithm animation systems.
However, replacing standard C/C++ data structures with those used by the Korsh system
is reasonably straightforward, which means that it has sufficient (pp) generality. Most of the
program visualisers concentrate on particular aspects of a program (which severely limits
(p) their completeness), but some provide almost complete views of most of the interesting
aspects of the program’s state (sufficient (pp) completeness).

In other words, grouping the surveyed systems by the data extraction approach and code
preprocessing techniques used produces the division in Table 3.3. The scores shown in the
table are the highest in each category, as this reflects the potential of the approach.

Based on this, automatic instrumentation appears to be the most suitable approach for
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Systems
Snapshots taken at breakpoints ppp ppp p DDD, Amethyst, BlueJ, Lens
Automatic instrumentation ppp ppp ppp RetroVue, ODB, VCC, VisiVue,

JAVAVIS, Jeliot, UWPI
Predefined data structures or inter-
faces

pp p pp Matrix, JDSL, Balsa-II, Zeus, Al-
gAE, WWAA, JIVE, Korsh

Annotation without restructuring pp pp p Balsa-II, Zeus, JCAT, JAWAA
Specialised execution environments pp pp pp Tarraingím, Pavane, Prosasim,

Leonardo, DynaLab

Table 3.3: Surveyed systems grouped by data extraction approach

visual testing.

3.5.3 Grouping by view control style
Two of the other most important questions when evaluating suitability for visual testing
are “How much does the representation look like what I want?” and “How much of the
work in producing the visualisation is done automatically?”. In Table 3.2, the first of these
questions was answered by the representation, abstraction and manual view control ratings,
while the second is answered by the automatic view control rating.

All of the debuggers (except Lens and Amethyst) and some program visualisers (JAVAVIS,
DynaLab and VisiVue, Jeliot) display objects and similar data structures only if the user
explictly asks to see them as a set of fields or with minimal abstraction of implementation
details. This provides sufficiently good (pp) manual view control, but automatic view control
that is limited at best (- or p) and a limited degree of abstraction at best (- or p). The view can
consist of an object graph (which is usually a sufficiently good (pp) representation) or textual
field displays (which is not a clear representation in the general case (p)). Amethyst is sim-
ilar, but it displays all variables in the current procedure or function (limited (p) automatic
view control and no (-) manual view control). VCC provides acceptable (pp) automatic view
control, but is otherwise similar to this group.

The system by Korsh et al. and UWPI attempt to deduce the right abstractions and
representations themselves, giving them good enough (pp) support for abstraction, represen-
tation and automatic view control but no (-) manual view control.

The algorithm animation and simulation and program visualisation systems that are
based on predefined data structures or interfaces that describe data structures can usually
produce views that are suitable for the data structures (good or very good (pp or ppp) represen-
tation and good enough (pp) abstraction and automatic view control). These include Matrix,
JDSL, Balsa-II, Zeus, JIVE, Tarraingím and Prosasim.

Some systems require the user to explicitly define almost every aspect of the visualisa-
tion including the position of every object in the visualisation. These are JCAT, JAWAA,
WWAA, AlgAE, Jeliot, Leonardo, Pavane and Lens. They have no automatic view control,
but good or very good (pp or ppp) abstraction, manual view control and representation. Tar-
raingím provides this ability, but also works with data structures through their interfaces.

Grouping the surveyed systems by the data extraction approach and code preprocess-
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Systems
Low-level visualisation with man-
ual control

p pp pp pp DDD, RetroVue, ODB, BlueJ, Vi-
siVue, DynaLab, JavaVIS, VCC

Low-level visualisation with no
control

- pp p - Amethyst

Data structure-based visualisation pp ppp pp pp Matrix, JDSL, Balsa-II, Zeus,
JIVE, Prosasim, Tarraingím

Manual view definition ppp ppp - ppp JCAT, JAWAA, WWAA, Al-
gAE, Jeliot, Leonardo, Pavane,
Tarraingím, Lens

Abstraction deduced by system pp pp pp - Korsh, UWPI

Table 3.4: Surveyed systems grouped by view control style

ing techniques used produces the division in Table 3.4. The scores shown in the table are
again the highest in each category (Tarraingím has not been included in the automatic view
control rating for manual view definition systems, as it scores highly in this category due
to its use of data structure interfaces).

Clearly, basing the visualisation on specified data structures interfaces is the most suit-
able approach for visual testing, although adding some manual view control and automati-
cally deduced abstractions may prove useful.

3.5.4 Conclusions
Based on the fact that each of the requirements for a visual testing tool is met by at least
one of the existing systems, it seems profitable to try to combine aspects of all of these
systems to produce a more useful tool.

In particular, combining the convenience of automatic instrumentation with a visual-
isation based on data structures, including automatic abstraction and some manual view
control, could result in a system that is a lot more suitable for visual testing than any of the
surveyed systems.



Chapter 4

Visualisation

This chapter examines possible approaches to various aspects of visualising a running pro-
gram. The design choices made in visualisation directly affect completeness, representation
and causal understanding. They may also indirectly affect manual and automatic view con-
trol.

For completeness, some sort of visualisation must be provided for every type of data and
code. Completeness in this case can be seen as providing at least satisfactory visualisation
for every type of data and code.

I have evaluated the visualisations described in this chapter for suitability for visual
testing by checking how well they meet the criteria mentioned in this section for different
types of information. The evaluation results use the notation defined in Table 4.1.

4.1 Primitive value representations
Programming languages usually contain a few primitive data types. Typically, these include
several forms of real numbers and integers as well as characters and strings. This section
describes some ways of displaying them.

4.1.1 Textual representation
In most cases, the best and most common way to represent a primitive value is as a character
string. For example, integers have several well-known character string forms. The most
common form by far is a version of the Arabic numeral system which has been in use for
over a thousand years with only minor cosmetic changes [42]. This notation has later been
generalised to real and complex numbers. Moreover, characters and character strings can

Score Meaning
- The visualisation does not visualise this type of information at all.
p The visualisation meets the criterion partially; the visualisation can be

used, but it is quite unpractical (representation); the visualisation shows
a small part of the information (completeness).

pp The visualisation meets the criterion well enough for basic use; the vi-
sualisation is reasonably clear in most cases (representation); the visu-
alisation shows most of the information (completeness).

ppp The system meets the criterion very well; the visualisation is very clear
(representation); the visualisation shows all the information (complete-
ness).

Table 4.1: Scoring system for evaluation of visualisations

18
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Figure 4.1: Examples of graphical representations of the real value 0.75 (from left to right:
bar, circle segment, arrow position on scale, luminance)

Technique Representation
Primitives

Textual primitives ppp

Graphical primitives p

Table 4.2: Primitive representations

obviously be represented as character strings. The string representation for most primitive
data types is quite compact, making textual representation a good choice for visualisation
of single primitives.

4.1.2 Graphical representations
Alternative graphical representations are available for primitive types, but they are often
specialised. For example, a real number that is known to be limited to a specified range
can be expressed as a suitably sized bar. As most of these representations require that
additional limits be placed on the values, they are unpractical for automatically generated
visualisations. Program visualisation tools that require the user to define a visualisation
in terms of graphical primitives (e.g. Leonardo [16]) usually support this technique. Most
graphical representations of numbers are based on showing a part of a graphical object
such as a bar or circle proportional to the value to be displayed or positioning or sizing an
object according to the value. Colour can also be used; the simplest mapping from value
to colour is to make the luminance proportional to the value (e.g. 0 = black, 1 = white).
It is quite hard to determine a value accurately from a colour. This representation is only
suited for detecting large errors in values. Figure 4.1 contains some examples of graphical
representations of the real value 0.75 (assuming a minimum value of 0 and a maximum of
1). Characters and strings are, however, very hard to represent in a meaningful visual way
as anything else than text.

4.1.3 Evaluation
Primitives can easily and clearly be shown as text, while most graphical representations
have limited use at best. This is summarised in Table 4.2.

4.2 Array representations
Arrays have a wide range of sizes. For instance, some arrays may be short lists of objects,
while others can be massive tables of numeric data. In order to handle this wide range of
possibilities, several different visualisations are needed.
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 1  2  3
 4  5  6

 1  2  3
 4  5  6

 0
 1

 0  1  2

Figure 4.2: The array {{1,2,3},{4,5,6}} as a table (with and without indices)

null1

0 0 1 2
321

Hello
0

World
12

Figure 4.3: The array {{1,2,3},null,{Hello,World}} as a table of tables

4.2.1 Arrays as lists
One of the most straightforward ways of representing an array is by expressing it as a list of
successive elements. These elements are usually separated by commas. For clarity in cases
where nested lists may occur, lists are often enclosed in some sort of brackets (usually curly
brackets). This technique is used in most command line debuggers. For example, an array
containing the items 123, 456 and 789 would be expressed as {123,456,789}.

4.2.2 Arrays as tables
Arrays can also be displayed as tables. This notation is especially natural for two-dimensional
arrays (by default, DDD displays 2D arrays as tables [62]), although it can be used reason-
ably well with tables with more or less dimensions. With three or more dimensions, some
thought must be given to how to group the dimensions intuitively. One approach (which
is used by default in e.g. Matrix) is to arrange arrays contained in a horizontally arranged
array vertically and vice versa. Figure 4.2 contains an example of showing an array as a
table.

If an integer is known to be an index into an array, it can be shown as an arrow or marker
next to the corresponding array element. This technique is used in e.g. Tarraingím [40].

In many programming languages, such as Java, arrays are a type of object and multidi-
mensional arrays are implemented as arrays of array references. In Java, an Object array
may contain any objects, including null references and any array (including itself) [21]. In
this case, the references between arrays are similar to the references between objects, and
can be visualised in a similar fashion (as described in Section 4.3). Without indices, the
result for a two-dimensional table is similar to the example in Figure 4.2. However, laying
out each array contained within an array separately may result in columns or rows not lin-
ing up properly. This means that indices must be shown separately for each of the arrays
contained in another array instead of using a single set of indices. However, this layout has
the advantage of adapting better to array elements of different sizes (as shown on screen).
An example is shown in Figure 4.3.

4.2.3 Arrays as plots
Arrays of numeric data can be represented as plots of various types (plots are also known as
graphs; I call them plots to avoid ambiguity). For example, DDD represents one-dimensional
arrays as two-dimensional plots with the array index on one axis and the value on the other
(see Figure 4.4 for an example) and two-dimensional arrays as three-dimensional plots with
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Figure 4.4: A DDD/gnuplot plot of a fixed point sine table (16 bit fraction, 2048 elements,
one period)
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Figure 4.5: A DDD/gnuplot plot of ai j = sin( iπ
25 )sin( jπ

25 ) (50×50 elements)
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Figure 4.6: A colour plot of ai j = sin( iπ
25 )sin( jπ

25 ) (50×50 elements)

the array indices on two of the axes and the value on the third (see Figure 4.5 for an exam-
ple) [62]. This technique is reasonably straightforward to implement and provides a good
graphical representation for large arrays.

The plot drawing facilities can be generalised somewhat by allowing the user to select
which axes to place values and indices on.

DDD handles compound variables (structs, objects, et.c.) in plots by showing all nu-
meric values contained in them [62]. This technique can be used to display arrays of objects
containing multiple numeric fields.

4.2.4 Arrays as images
Two-dimensional tables of numerical values shown as colour values resemble images. In
this case, it makes sense to draw each value as a pixel instead of a box; in other words,
interpret the array data as a pixmap.

This representation makes particularly good sense in the case where the two array in-
dices correspond to spatial dimensions in the context of the meaning of the data.

Images are slightly easier to comprehend than 3D plots, especially at small sizes. Colour
can be used to help distinguish different values (e.g. by using a scale that goes from blue
to yellow instead of black to white). Alternatively, many numeric values can be coded into
the colour at once, although this easily becomes confusing. Small differences in values are
harder to detect in an image than in a 3D plot. Figure 4.6 shows an array visualised as an
image.

4.2.5 Evaluation
Lists are a straightforward way of expressing arrays, but tables are clearer in many cases.
Plots and images can noticeably improve one’s comprehension of large numerical arrays,
but they are useless for most other types of array. This evaluation is summarised in Ta-
ble 4.3.
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Technique Representation
Plottable arrays Other arrays

Arrays as lists pp pp

Arrays as tables pp ppp

Arrays as plots ppp -
Arrays as images ppp -

Table 4.3: Array representations

Figure 4.7: Example of objects in a Java program shown using DDD

4.3 Class and object representations
DDD [62] displays objects and structs as boxes containing the fields of the struct or class.
References (pointers) to other objects are shown as arrows from one box to another (op-
tionally labelled with the name of the reference field). Nested structs (as in C and C++
programs, for instance) are shown as nested boxes. An example data view from DDD is
shown in Figure 4.7. Amethyst [39] also shows records and arrays as nested boxes. Null
pointers can be shown as short arrows leading to nowhere or to a special symbol, as the
absence of an arrow or as a special symbol or text string (e.g. “null”).

In Java, no object is stored inside another object; they are all separately allocated on
the heap. This means that the program code does not distinguish between objects that are
nested within another and those that are simply referred to. Thus, another criterion must be
used to decide whether an object should be shown inside the object that refers to it or as a
separate object.

4.3.1 Nesting or arrows?
The nested box representation makes sense in cases where an object unambiguously be-
longs to a single parent object (this corresponds roughly to composition in UML), while
the graph representation makes more sense in the general case where an object may be re-
ferred to by several other objects. Deciding which one of these to use is not trivial, although
some rules can be stated:

• Objects without references to other objects can always be shown nested inside the
object that refers to them. This is quite intuitive for objects that wrap primitive values
or contain only a few primitive values, especially if the objects are immutable, in
which case there is little need to tell the difference between two objects containing
the same data.

• Cyclic object nesting should be avoided. One way to avoid it is to use the graph
representation. Another is to remove references that cause cycles (references from
an object to one of the objects it is contained in) during abstraction, and put in a
placeholder that identifies the referenced object. The former alternative is clearer in
most cases. The latter is a convenient work-around in cases where nesting is desirable
but causes cyclic nesting.
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• Objects that take up a large amount of screen space should not be nested inside
another object. Alternatively, maximum size restrictions can be imposed on objects
and propagated to their subobjects as in Amethyst [39].

It should be noted that any object in memory in a C/C++ program can be referred to
by a pointer, including the fields of a struct. In fact, in most implementations, every single
byte of data and code in the program can be pointed to, irrespective of what it contains.
This means that not only do the same problems with nesting apply to C/C++ programs; the
problems are actually worse.

Ownership-based nesting

One way of determining whether objects unambiguously belong to a single object is to
calculate the ownership tree of the graph (as defined in e.g. [45]) consisting of the objects
and their references to each other. An object x owns another object y if all reference chains
from the root object r (the only object that can be accessed without references from other
objects) to y pass through x. An object x is an ancestor of y in the ownership tree if and only
if x owns y. The parent of y in the tree is then the object that owns y but does not own any
object that owns y.

The ownership tree suggests a natural nesting hierarchy with an interesting property:

Lemma 1 An object y can only be referred to by objects that are owned by y’s parent p.
Proof: p owns y but not x. Thus, a path exists from the root node to x that does not pass
through p. Let us assume x refers to y. y can therefore be reached from the root node through
x without passing through p, contradicting p’s ownership of y. Thus, x cannot refer to y. �

If we nest objects inside the object that owns them, Lemma 1 implies that references
to y can only come from p or an object z inside p. However, z is not necessarily contained
directly in p (i.e. p need not be z’s parent). This means that references upward in the nesting
hierarchy are still possible.

Ownership-based nesting has the advantage of automatically grouping objects together
in a reasonably meaningful way. However, it has the distinct disadvantage that changes
in the references between the objects can cause the nesting hierarchy to change radically,
which may render it confusing to use.

As a Java method can read static variables and its own local variables at any time
and start traversing the object graph from there, it seems reasonable that the root object
should have references to all objects that are referred to by local and static variables. This,
however, means that copying an object reference into a local variable or calling an instance
method automatically means that the referenced object is considered to belong to the root.
This leads to even more unintuitive changes in the nesting. Also, the ownership diagram
depends on the currently active thread. In conclusion, ownership-based nesting can change
suddenly in some quite common cases. It is therefore not suitable for visual testing.

Selection based on object type

Due to the problems with nesting, it seems best to default to arrows in all cases except
objects that cannot contain references to other objects and other types for which the nested
appearance is known to be desirable, such as arrays. It makes sense to allow the user to
adapt the default settings to his own code and needs by specifying the types of object that
should be shown as nested by default.

Manual selection

The user should also be able to override the automatic nesting choices (based, for example,
on the class of the object) individually for every object. This is especially useful if an object
that is usually shown nested is unexpectedly referred to by several different objects.
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Figure 4.8: Example of labelled references

4.3.2 Static fields
In order to show the values of static fields, classes can be displayed in the same way as ob-
jects. In other words, classes can be considered singleton objects, where the static methods
and fields are the methods and fields of the singleton object.

4.3.3 Labelling
To help the user identify objects and their types, each object should be labelled with its
type and a unique identifier (e.g. “instance of java.lang.String, id 1234”, or more
briefly “java.lang.String 1234”). Classes can be labelled with their name (e.g. “class
java.lang.String”). The identifier for an object should be unique at least over the ob-
ject’s lifetime. There is even less potential for confusion if the identifier is unique over the
program’s entire lifetime.

In languages with pointer arithmetic, such as C++, pointers can be used as identifiers.
Practically all debuggers for C and C++ use pointers to refer to heap-allocated objects.

In cases where the identity and type of an object are uninteresting, the label can be left
out to save space. This is useful when visualising e.g. arrays (as illustrated in Figure 4.3)
or strings.

4.3.4 Methods
Methods can also be shown in objects and classes for reference and to allow convenient
method invocation. In most cases, however, displaying all available methods for every ob-
ject is a waste of space. For invocation purposes, putting the methods for each object or
class in a pop-up menu that is accessible e.g. by right-clicking on the object or class is
almost as convenient as showing the methods all the time and occupies much less screen
space.

Methods can also be shown as part of the code visualisation, as described in subsec-
tion 4.4.4.

4.3.5 Indicating the origin of a reference
When showing references as arrows, there are two different ways to indicate which field of
an object contains the reference represented by an arrow.

One is to label the arrow with the name of the field and place the start of the arrow on
the edge of the referring object, as in DDD. An example of this style is shown in Figure 4.8.
I will refer to this style as labelled references.
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Figure 4.9: Example of nested references

Technique Representation
Objects

Objects without nesting pp

Objects with nesting ppp

Labelled references pp

Nested references ppp

Table 4.4: Object representations

The other is to place the start of the arrow in an area reserved for the field inside the
object (the proposed pointer notation for Amethyst). Essentially, instead of a value the
field of the object would contain a small placeholder from which an arrow extends. A null
reference can be shown e.g. as a placeholder without an arrow. An example of this style is
shown in Figure 4.9. I will refer to this style as nested references.

The latter approach seems to be less prone to clutter than the former, as the field names
are shown tidily next to each other instead of appearing somewhere along the arrow. There-
fore it is easier for the user to visually connect the arrow with the right field. Also, the latter
approach works much better with objects nested within each other, as it allows arrows to
clearly originate from a nested object instead of adding a complex label to describe the
relation.

Also, the former approach becomes confusing if one wishes to mix nested and non-
nested child elements in the the same array. This problem can be circumvented by display-
ing the labels of all the referenced objects inside the array (like DDD does) as shown in
Figure 4.8 or showing indices for the objects that are shown nested inside the array.

In short, the nested reference view is simpler, clearer and more flexible than the labelled
reference view.

4.3.6 Evaluation
Showing a graph of objects without nesting is acceptable in many cases, but nesting can be
used to improve clarity noticeably. Similarly, labelled references between objects are often
acceptable, but nested references are clearer. This evaluation is summarised in Table 4.4.

4.4 Code visualisation
To make it easier for the user of a visual testing tool to understand the dynamic structures
(data and execution) shown by the visual testing tool, the tool must show the link between
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Figure 4.10: Part of a source code file as shown in DDD

these dynamic structures and the static structures of the program as described in the source
code. In order to do this, the source code must also be visualised to some extent.

4.4.1 Displaying source code
The simplest way to visualise code is to display the source code text. Most visual debuggers
(e.g. DDD [62, 63] and GVD [67]) just display the source code one file at a time, with
annotations to indicate breakpoints, current execution position and such. Figure 4.10 shows
part of a DDD code view.

4.4.2 Full-detail graphical representations of program code
Theoretically, graphical representations (such as parse trees, described in [4], for example)
can be created for any programming languages without sacrificing any expressiveness, but
these representations are not very useful in the usual case where the program has been
written in textual form, as the textual form is more familiar to the programmer and usually
more compact. Therefore, I will leave this approach out of consideration.

4.4.3 Colour pixel and line views of program code
Ball and Eick [7] have developed a wide range of code visualisations that show various
properties of code as colourful figures. These representations are mostly designed to track
changes between versions and display attributes such as code age or to provide overviews
of various statistics about the code (e.g. nesting level).

These visualisations are intended for different problems than those addressed in this
thesis, although some (e.g. viewing source code with colour highlighting and an extremely
small font) may be useful as navigational aids.

4.4.4 Graphical hierarchies for classes
As the classes/interfaces and packages of a Java program (usually) correspond to files and
directories in a file system (respectively), the tree browsing metaphors that are commonly
used to browse file systems can also be applied to Java programs. The tree can be extended
to the method level to allow convenient access to methods in large classes.

Practically all Java development and debugging tools use the package hierarchy (or the
corresponding directory hierarchy) to browse source code. BlueJ uses the class inheritance
hierarchy instead, displaying it in a form similar to a UML class diagram [27]. Both these
views can be generated from the source code, from the compiled class files or from the
classes loaded in the executing program.

Similar techniques can be used for C++ programs, although the correspondence be-
tween files and classes is not enforced by the language. Therefore, when examining C++
programs, the source code must be parsed to find classes. Also, C++ allows code outside
classes, which complicates the issue. In this case, browsing the code using directories and
files instead of packages and classes is easier to implement and possibly easier to use.
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Figure 4.11: Part of a package tree of the standard library using AnyJ

Package tree

A package tree of a Java program can be generated by scanning the class path of the pro-
gram. Using the source code requires additional parsing. Using the loaded classes makes it
hard to access classes that have not been loaded. Therefore, the most satisfactory approach
would be to base the tree on the contents of the directories in the class path. This will cause
problems with custom class loaders, as there is no standard way to list classes available to
a class loader. However, as long as only local files are used, directory listing can be used to
look for available classes.

The package tree is used to select classes to view and edit in many IDEs. Figure 4.11
shows an example (taken from the AnyJ IDE).

Nested classes and interfaces in a Java program are stored as separate class files in
the same directory as the class to which they belong [56]. Therefore, nested classes and
interfaces will be shown as classes belonging to the package in which they reside, if the
package tree is generated from directory listings of a file system instead of the source code.

The package tree can also be extended to contain the methods in each class. Many IDEs,
such as AnyJ, do this to allow easier editing and viewing of source code.

Class diagrams

UML class diagrams can also contain information on other relationships between classes,
such as composition, aggregation and references. It is hard to differentiate between these
relationships in a Java program, but it is often easy to find these relationships by examining
the types of the variables declared by each class. For example, BlueJ shows use relation-
ships in its class diagram views. Showing references between elements in the program is
further described in Subsection 4.4.5. Class diagrams can also show the fields and methods
in each class and a lot of other information. See [20] for a more detailed description of
UML class diagrams. Figure 4.12 contains a simple example class diagram.

4.4.5 Cross-references in code
Programs typically contain a lot of different classes and methods that refer to each other in
different ways such as maintaining object references and calling methods. Getting a picture
of how the parts of the program refer to each other should help one understand how the
parts of the program interact and what the purpose of each part is. Tools such as Source-
Navigator [77] can cross-reference a program and show references between elements in the
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contactinfo

ContactInfoDatabase

+add(p:Person)
+getPerson(name:String): Person

Person
+name: String
+address: String
+phoneNumber: String

Employee
+salary: BigDecimal

UserInterface

Figure 4.12: A class diagram of a simple contact information database

Figure 4.13: Browsing the reference graph of Matrix using Source-Navigator

program source code, such as all methods that refer to a class.
Cross-references can be visualised in a straightforward manner as graphs, but these

graphs will be extremely complex if the entire program is shown down to individual method
invocations and variable accesses. To avoid this problem, graphs can be drawn by starting
from a specified element and allowing the user to request that elements referring to or
referred to by an element should be added (Source-Navigator uses this technique). This
allows the user to limit the graph to the references he is interested in, although the big
picture is hard to get using this technique. A screen shot of Source-Navigator showing
references to the class VisualType and from the method VisualType.isDuplicate in
the Matrix source code is shown in Figure 4.13.

To get an overview of a large program, it may be more useful to show references be-
tween classes instead of delving into details on the level of individual methods and vari-
ables. This complements the detailed, user-controlled view used by e.g. Source-Navigator.
References on the class level can be used as a part of UML class diagrams (see subsec-
tion 4.4.4).

4.4.6 Evaluation
Code visualisation can be split into two subproblems: a fine-grained view containing every-
thing in the source code (such as the source code itself) and various coarse-grained views
that provide an overview of the entire program with an emphasis on a particular aspect of
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Technique Representation
Package hier. Inheritance hier. References Statements

Source code p p p ppp

Package tree ppp - - -
Class diagram pp ppp p -
Reference graphs p - ppp p

Table 4.5: Code representations

the program, such as package trees, class diagrams and references graphs. Again, complete-
ness means that everything in the code has a representation. Table 4.5 shows the evaluation
of these code representation technique considered here.

4.5 Execution visualisation
The state of an executing program includes more information than the current data values
and the source code. In particular, the current execution positions of each thread and the
execution history are of interest to the programmer.

Instead of visualising the execution history of a program directly, information about
causes and effects in the program can be visualised. The relationships between the causes
and their effects are called the causal relationships of the program. The two most common
forms of causal relationships in a program are between assignments and reads of the same
variable and between a conditional statement and the statements caused to execute (or not)
by this statement.

4.5.1 Tracing through source code
The most usual way of representing the execution of a program in visual debuggers is by
displaying the source code with the current line highlighted or marked in some way. For
example, in Figure 4.10 the current line is indicated using an arrow. This approach is very
easy to implement and is familiar to most programmers, but requires a lot of screen space
and does not integrate very well with a graphical data view.

The parameters with which the currently executing method was called can be added to
the view (e.g. as an annotation to the formal parameters in the method header, although this
may not be visible while tracing execution).

4.5.2 Highlighting objects
When a method is executed, this can be displayed by highlighting the object or class to
which the method belongs in the data view and the running method. Similarly, when a field
of a class or object is written or read, the field and the class or object to which it belongs
can be highlighted.

4.5.3 Annotating objects
If the object view does not contain the methods, they must be added to the on-screen rep-
resentation of the object in order to show that they are being executed. Multiple running
instances of the same method can be shown by mentioning the method once for every in-
vocation. Information on the location on the stack and parameters of each invocation can
be shown as a part of this. The current execution position can also be shown for each active
method. An example of this is shown in Figure 4.14.

This method can also be used to visualise the execution history of the program by
annotating each object with the methods executed on it and the operations performed as
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2: rotateright(): 103

3: insert(int key=99): 25

Figure 4.14: Example of an object annotated with executing methods (stack position,
method name, parameters and current line number)

part of these methods. However, this will quickly become hopelessly cluttered. For clarity,
the operations should be grouped by executing method and only the method invocations
should be visible by default (see discussion of elision control in Subsection 5.4.1).

4.5.4 Drawing operations as connections
When an object calls another, they can be interconnected graphically (e.g. by an arrow)
to show a method call. Prosasim uses this approach, which can be expressed conveniently
using UML collaboration diagrams (see Subsection 4.5.8). This can be extended to ma-
nipulation of variables. Different representations could be used for read, write and call
operations; various forms of arrows seem natural. Static method calls can be shown on
the graphical representation of the class. Some of these ideas have been implemented in
VisiVue.

4.5.5 Viewing the execution stack
Practically all modern programming languages have an execution stack or execution stacks
of some form. The contents of an execution stack can be displayed in a number of ways.
The most straightforward approach is to display the stack frames on top of each other as a
vertical table. This suits the stack metaphor well. Each stack frame can then be considered
a special form of object (the local variables in the frame can be considered fields) and
displayed accordingly.

This allows the user to check which methods are active and the values of all their local
variables and arguments. The current position in each method can also be added to the stack
frame.

Most debuggers only show a list of calls and arguments in the execution stack view,
and require the user to select a stack frame in order to view its local variables. This makes
it hard to get an overview of the calls made by the program. Therefore, the local variables
or at least the parameters of the method call should be shown in the stack frame.

4.5.6 Viewing the call tree
VCC [5] displays all function calls that have been made as a tree, with the currently active
branch highlighted. By pointing to a node in this tree, the arguments and local variables in
this function call can be seen.

Displaying the call tree for a thread is a generalisation of displaying the execution stack.
It allows the user to examine the arguments of all calls that have been made instead of just
the currently active calls. It is also a convenient way of structuring the list of operations
performed by the thread.
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Figure 4.15: An example of RetroVue’s history view based on an extended call tree

To implement the call tree display, all method calls must be stored. Also, the values of
local variables and arguments must be stored when a method exits. This can be done by
copying stack frames whenever a method exits. Alternatively, if all local assignments are
logged, the relevant information can be reconstructed from this.

RetroVue displays the entire execution of a thread, including all operations that change
data values (e.g. assignments) as a tree structured by method calls [81]. This representation
increases the information content of the call tree significantly. An example of a tree from
RetroVue is shown in Figure 4.15.

The biggest problem with the call tree view is that it integrates badly with the data view,
which makes it hard to see the connection between the objects shown in the data view and
the operations in the call tree.

4.5.7 Sequence diagrams
UML sequence diagrams (described in e.g. [20]) show the flow of control and interaction
between objects in an object-oriented program. In these diagrams, time is represented by
the Y axis. They show objects as vertical lines with a box identifying the object at the
top and boxes along the lines indicating execution and arrows between objects indicating
messages between objects.

Only calls are usually considered messages. However, all operations can be shown as
messages, at the expense of adding large numbers of messages from objects to themselves.

Sequence diagrams can be used to visualise the execution flow of a running program. As
a sequence diagram of the entire execution of a program is going to be unmanageably large
in most realistic cases, the user must specify the part of the execution of the program to
view. One way to do this is by selecting a branch from the call tree. The sequence diagram
can then easily be generated from the information in the call tree. Sequence diagrams can
be used to display multiple threads that communicate using asynchronous calls [34]. An
example of a sequence diagram is in Figure 4.16.
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UserInterface ContactInfoDatabase newPerson : Person

<<create>>

addPerson(newPerson)

Figure 4.16: A sequence diagram of an insertion in the database shown in Figure 4.12

4.5.8 Collaboration diagrams
UML collaboration diagrams (in e.g. [20]) are another way to show interaction between
objects. These diagrams show objects as boxes and messages (e.g. method calls) between
them as arrows. The order and type of the messages is specified by labelling the arrows.
The message type and parameters are shown as labels on the arrows.

The arrow labels include a sequence number for the message, the message (including
its parameters) and (where applicable) a list of preceding messages in other threads [41].
Thus, collaboration diagrams can be used to show the operation of multithreaded programs,
including the interaction between threads.

A collaboration diagram is more suitable for describing interactions between several
objects than a sequence diagram. On the other hand, the order in which things happen is
much clearer in a sequence diagram. Moreover, collaboration diagrams occupy less screen
space than sequence diagrams.

Like sequence diagrams, collaboration diagrams are easily constructed from branches
of a call tree. If the currently executing branch of the program is shown as a collabora-
tion diagram, the resulting dynamic collaboration diagram is similar to drawing arrows for
method calls (as described in subsection 4.5.4), but with numbering and without removing
the arrows after the call is completed.

By displaying all operations as messages, collaboration diagrams can be extended to
show all operations that occur, although this makes the diagram extremely cluttered.

4.5.9 Hybrid diagrams
The message passing arrows of a collaboration diagram can also be used to display calls
and interactions between objects in a data view that shows the relevant objects, which
eliminates the need for a separate collaboration diagram. Annotations can be used to display
operations, statements or source code lines executed by an object and the current execution
position in running methods. The resulting hybrid diagram describes both the state of the
program and its execution history, but it may easily become cluttered and it is not in the
UML.

As with annotation of objects, the operations performed by each invoked method must
be elided by default to keep the amount of information shown manageable (see Subsec-
tion 5.4.1 for details).

An example of a hybrid diagram (depicting an AVL tree insertion interrupted just before
rotating, with all executed instructions elided except for one of the currently executing
insert method invocation) is shown in Figure 4.17.
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Figure 4.17: An example of a hybrid diagram
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4.5.10 Assignment search
A simple way to allow the user to find the reason for the value of a variable is to search
backwards through the execution history of the program for the last assignment to a vari-
able. The result of this search is the statement that gave the variable the value it has at the
current point of execution.

By searching through the execution history instead of attempting static analysis, side
effects of e.g. method calls are automatically taken into account.

If the program is multithreaded in such a way that multiple operations can occur simul-
taneously on the same variable, it may be impossible to define a total ordering of read and
writes on a variable. If variable reads and writes are atomic, this problem does not arise.
In Java, read and write operations on double and long variables may be non-atomic [36].
This means that assignment search in Java programs may fail on double and long variables
unless additional locking is introduced.

4.5.11 Slicing and dependence graphs
When looking for reasons for a program’s misbehaviour, many programmers look at the
(incorrect) value of a variable and try to find a reason for this value by tracing the execution
of the program backwards. In essence, they try to concentrate on the part of the program
that could have affected the variable value. Parts of programs that could have affected the
value of a specified variable at a specified statement or point in the execution of a program
are called slices and the process of calculating slices is called slicing. [60]

Definitions

Slicing uses techniques from data and control flow analysis to determine the statements that
could have affected the value of a variable at a specified statement or point in the execution
of the program. This is either done by static analysis, in which case the slice (a static slice)
contains all the statements that can affect the value of the variable at the specified statement,
or by dynamic analysis based on a specified execution history, in which case the slice (a
dynamic slice) contains all the statements in the execution history that could have affected
the value of the variable at the end of the execution history. In other words, the static slice
is based on any possible execution history, while the dynamic slice is based on a specific
execution history.

Slices are defined using dependence graphs. A static slice is based on a program de-
pendence graph (PDG), while a dynamic slice is based on a dynamic dependence graph
(DDG).

Definition 1 Program dependence graph (PDG):
A PDG is a directed graph. The vertices of a PDG are the statements in a program. An edge
exists in a PDG from x to y iff x 6= y and one of the following is true:

• x has a (static) data dependency on y, i.e. y writes to a variable, memory location or
such that may be read by x.

• x has a (static) control dependency on y, i.e. x executes or does not execute depending
on the path taken at a conditional branch at y.

Definition 2 Dynamic dependence graph (DDG):
A DDG is a directed graph. The vertices of a DDG are executed statements (one vertex for
every time a statement is executed), and an edge exists from x to y iff x 6= y and one of the
following is true:

• x has a (dynamic) data dependency on y, i.e. x read a value written by y.
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• x has a (dynamic) control dependency on y, i.e. y is the conditional branch that
branched in such a way that x was executed and another choice at y would have
allowed x to possibly not execute.

Definition 3 Static slice:
A static slice at statement e with respect to variable v is the set of statements reachable
along the PDG from any statement s that can assign a value to v such that s is reachable
from e without passing through any statement that assigns a different value to v [1, 2].

Definition 4 Dynamic slice:
A dynamic slice at the end of an execution history E with respect to variable v is the set
of statements reachable along the DDG from the last statement in E to assign a value to
v [1, 2].

In order for these definitions to work in multithreaded programs, the order of read
and write operations must be defined for each variable; no operations of this type may
occur simultaneously. As noted in Subsection 4.5.10, this is not necessarily true in Java
without additional locking. In most programming languages, including Java, control flow
in a thread can only be affected by conditional statements in that specific thread, which
means that multithreading causes no additional problems for control dependencies.

Applications

Slices can be used to help a programmer locate parts of a program that may contain a fault,
by allowing the programmer to select a variable in a statement and see the slice of the
program with respect to the variable at this statement (e.g. by highlighting the slice in the
source code display). This is used in Spyder [1] and Bandera [18].

Dynamic slices are (usually) smaller than static slices, and are therefore easier to work
with when debugging [59].

By adding a few assignment statements to model method calls, object creation and other
operations, DDGs can be defined for execution histories of object-oriented programs [64].

Slices often consist of a few statements scattered here and there in a program [60].
Displaying these statements by highlighting them in the source code is not very convenient,
as the user must still look for the relevant statements in the source code. Furthermore, the
slice contains only a small part of the information in the PDG or DDG. The highlighted
statements correspond to the vertices of the graph, but the edges are not shown in any way.
In other words, most of the information on dependencies between statements is lost when
the dependency graph is converted into a slice.

The PDG may contain a vertex for every statement in a program, and is therefore prob-
ably too large to show completely. The DDG is in most cases even larger, as it can contain
any number of vertices for each statement in the program; its size is only limited by the
length of the execution history. However, the DDG provides information that is specific to
a particular execution history, so it reflects the real behaviour of the program more closely
than a PDG and thus suits visual testing better.

In most cases, the visualisation of a DDG must be limited to only a small part of the
graph. The definition of a dynamic slice suggests that a good starting point is the last
statement in an execution history to assign a value to a specified variable. Initially, the
visualisation of the DDG only displays the vertex corresponding to this statement. The user
can then select vertices and request that all edges from this vertex and the vertices at the
ends of these edges be shown. This essentially means that the user can choose an incorrect
variable value and then backtrack through the statements that could have affected the value
to find the cause of the error.
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Graphical layout

Definition 2 implies that if an edge exists from x to y, y was executed before x. Obviously,
this precludes the existence of cycles in the DDG (an event cannot precede itself). There-
fore, by placing statements in chronological order from top to bottom1, a DDG can be laid
out in such a way that if x depends on y, x is always below y. This makes the order of
execution much clearer and makes arrowheads on the edges redundant (although including
them may improve clarity).

In multithreaded programs, chronological order may only be a partial order (i.e. some
statements have executed simultaneously so that none precedes any of the others). As-
suming the assumptions made when defining a DDG hold, this poses no problem; any
total ordering consistent with the chronological partial ordering can be used. Alternatively,
statements that executed simultaneously can be shown at the same vertical position.

Application to Java programs

Constructing a DDG for a Java program appears to require modifying the JVM to keep track
of dynamic dependencies. Also, displaying the execution of a Java program as a sequence
of bytecode operations is not very useful, so the compiler should be extended to produce
a mapping from bytecode to source code statements [59]. As a substitute for statements,
source code lines can be used, although this will decrease the detail level of the view if
several statements are written on a single line. Also, the bytecode instructions are at a very
low level, so combining several bytecode operations into a single vertex in the DDG should
improve the readability of the resulting graph. This can be done e.g. by treating a statement
or a line as a single operation. In some cases, however, the option to break a complex
expression evaluation into simple parts may be useful. Therefore, it is probably a good idea
to allow the user to choose between using bytecode operations, statements and lines as the
vertices of the DDG.

Most Java bytecode operations manipulate an operand stack that is specific to each
execution stack frame. If bytecode operations can be observed individually, the locations
on the operand stack can be treated as variables in the DDG.

Control dependencies can be calculated either by analysing the source code or the byte-
code. When analysing the source code, the dependencies are more or less determined by
the block structure of the source code. When analysing the bytecode, an algorithm that
computes control dependency graphs for any control flow, such as the algorithm described
in [19] and [4], must be used. However, analysing the bytecode has the distinct advantage
that the bytecode has only a few simple operations that affect control flow, while the source
code is more complex and may be optimised by the compiler.

The control flow in Java programs is complicated by two additional issues: exceptions
and concurrency.

Exceptions make the control flow more complex, as exceptions can be caught in any
of the calling methods and they can cause methods to terminate prematurely. Control flow
graphs can be extended to include exception handling [51]. However, this extension makes
the control flow graphs larger and harder to generate. For the purposes of visualisation it
may be a better idea to ignore exceptions until one is actually thrown rather than clutter the
dependency graph by adding the possibility of an exception being thrown to every time a
field or method in an object is used; after all, a NullPointerException could be generated
by any one of these operations. Similarly, every single read or write of an array element can
cause an ArrayIndexOutOfBoundsException and every integer division or remainder can
cause an ArithmeticException unless the indices or divisors can be shown to be always
valid (which is hard to do in most cases). To ignore exceptions until they are actually
thrown, one need merely ignore them when calculating control dependencies except for
making the execution of the catch clause that catches the exception control dependent on

1Obviously, this layout can be mirrored, rotated and otherwise transformed in a number of ways.
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the operation that threw the exception. Obviously, adding exceptions in this way only works
with dynamic analysis.

Concurrency adds synchronisation and communication dependencies between threads.
Communication dependencies are already handled in the dynamic analysis case by the data
dependency analysis, and synchronisation can be modelled by making operations that block
dependent on the operations that caused them to be blocked and unblocked.

Algorithm

The processing needed to produce a DDG can be divided into two parts:

• Calculating the control dependency graph for the program.

• Collecting the information needed for the DDG while the program executes.

• Generating a DDG from the collected information.

The control dependency graph can be calculated using algorithms familiar from com-
piler technology. A good description can be found in [4].

While the program is being executed, the following information must be collected for
each (bytecode) operation o that is executed:

• All reads by the operation (Ro).

• All writes written by the operation (Wo).

Additional information about the executed operations can be collected while they are
executed to provide better visualisations, such as the bytecode or source code position of
each operation.

Every read or write is a pair 〈v, l〉, where v is the value and l the location (operand stack
element, array element, local variable or field) the value was read from or written to.

Assuming a sequence of operations o1,o2, . . .on is being executed, the data dependen-
cies between these operations can be calculated as the operations execute. A read (v, l) at
operation o j reads the last value written to l. In other words, the value read by o j from l is
data dependent on operation oL(l, j), where:

L(l, j) = max
(k< j)∧(∃v|〈v,l〉∈Wok )

k

Obviously, if o j writes to l, L(l, j +1) = j. If not, L(l, j +1) = L(l, j).
Thus, instruction o j is data dependent on:

Do j =
⋃

∃v|〈v,l〉∈Ro j

oL(l, j)

When drawing the DDG we also want to label the data dependencies with the value and
location corresponding to the dependency, so we instead want to calculate:

D′o j
=

⋃

∃v|〈v,l〉∈Ro j

〈v, l,oL(l, j)〉

Therefore, the execution of the program looks something like:

i← 1
while program still running:

Execute instruction oi (storing Roi and Woi).
D′oi
←

⋃
〈v,l〉∈Roi

〈v, l,Ll〉

forall 〈v, l〉 ∈Woi :
Ll ← oi

i← i+1
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Figure 4.18: A bytecode operation-level DDG
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a+=b;

a+=b;

int a=1;

for(int b=1;b<3;b++)

for(int b=1;b<3;b++)

a=1

a=2

a=4

b=1

b=1

b=2

Figure 4.19: A line-level DDG

Drawing the DDG for a variable a after execution is then a simple matter of drawing
a graph containing the vertices reachable along the edges defined in D′ and C from oLa .
Different types of edges should be used for data and control dependencies. For example,
one can use solid lines for data dependencies and dashed lines for control dependencies.

Example

As a simple example of visualising a DDG with a Java program, consider the value of a at
the end of the program:

public class ArithmeticTest {
public static void main(String[] args) {

int a=1;

for(int b=1;b<3;b++)
a+=b;

System.out.println(a);
}

}

By executing the program and calculating the DDG using bytecode operations as ver-
tices, the graph in Figure 4.18 is produced. Control dependencies are shown as dotted lines,
while data dependencies are shown as solid lines labelled with the corresponding value and
variable (where applicable). This graph is hard to read for several reasons:

• Many of the data dependencies represent values on the operand stack, which exists
only in the JVM, not in the Java language itself. This is reflected in the graph as data
dependencies with no corresponding variable.

• There are lots of unnecessary vertices in the graph that do nothing but move data
between the stack and local variables.
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Technique Representation Completeness
Current op Active calls Current op Active calls

Tracing in source code ppp p ppp p

Highlighting objects pp pp pp pp

Annotating objects ppp pp ppp ppp

Operations as arrows p ppp pp ppp

Execution stack pp ppp ppp ppp

Call tree pp pp ppp ppp

Sequence diagrams pp pp ppp ppp

Collaboration diagrams pp pp ppp ppp

Hybrid diagrams pp pp ppp ppp

Dynamic dependence graphs p p pp pp

Table 4.6: Execution representations for current state

• It forces the user to think at the bytecode operation level.

Calculating the DDG using source code lines as vertices produces the graph in Fig-
ure 4.19. Grouping the executed operations by source code line removes most of the stack
operations. However, if a statement is divided into several lines, intermediate values on the
stack may become visible in the line-level DDG.

4.5.12 Evaluation
There are several contexts in which one may want to study the execution flow of a program
in different ways. When one is watching the program execute step by step, a display of the
current state of the execution of the program (the currently executing operation and a list
of active method calls) is usually enough to allow one to understand the correspondence
between the program’s behaviour, its data structures and the statements that are executed.
When trying out or testing a program, one may want to examine the sequence of method
calls that has been executed. These two usage types have been evaluated separately in
Tables 4.6 and 4.7. The current execution state consists of two data: the current position
in the code and the set of active method calls. The execution history can be divided into
method calls and other operations such as variable accesses, conditionals and loops. For
each type of information, its representation (how easy the information is to extract from
this notation) and completeness (how much of the information can be expressed using this
notation) has been evaluated. For the purposes of this comparison, sequence diagrams,
collaboration diagrams, annotations, hybrid diagrams and call trees are assumed to include
all operations, not just method calls.

4.6 Summary
The representation effectiveness of the data visualisation techniques were shown in Ta-
bles 4.2, 4.3 and 4.4. Based on these tables, a visual testing tool should show primitives
textually, arrays as tables, objects with nesting (where applicable) and with nested refer-
ences. To further improve the visualisation of numeric arrays that can be meaningfully
plotted, the option to view arrays as plots and images can be added.

As Table 4.5 clearly shows, showing the source code is a complete visualisation of the
information in the code, but it is not a very useful representation in many cases. Package
tree, class diagram and reference graph visualisations can be added to make it easier for the
user to understand the package hierarchy, inheritance hierarchy and references in the code
respectively.
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Technique Representation Completeness Causal
Calls Other ops Calls Other ops

Tracing in source code p p p p p

Highlighting objects pp pp p p p

Annotating objects p pp ppp ppp pp

Operations as arrows pp pp p p p

Execution stack pp pp p p p

Call tree ppp pp ppp ppp pp

Sequence diagrams pp pp ppp ppp pp

Collaboration diagrams pp pp ppp ppp pp

Hybrid diagrams pp ppp ppp ppp pp

Dynamic dependence graphs pp pp pp pp ppp

Table 4.7: Execution history representations

Tables 4.6 and 4.7 suggest that showing the execution stack, displaying the execution
history as a call tree and hybrid diagrams, tracing execution in the source code and brows-
ing the dynamic dependence graph is sufficient for satisfactory visualisation of execution.
This means that additional visualisations such as viewing operations as arrows, collabo-
ration diagrams, highlighting or annotating objects and sequence diagrams are not really
necessary, although some special cases may exist in which they are more convenient.



Chapter 5

Elision and abstraction

Elision (hiding unwanted information) and abstraction (hiding nonessential aspects of in-
formation such as implementation details) are the two key techniques used to keep the
amount of information in a program manageable.

In well-written object-oriented code, abstraction and encapsulation are used to ensure
that the functionality of a module of the code can be used, without being aware of the
implementation of the module, through an interface that captures the essentials of the func-
tionality of the module [26]. The goal of data abstraction in visual testing is to ensure that
data structures can be viewed in a fashion consistent with their interfaces instead of their
implementations in cases where the implementation is irrelevant.

The data, code and execution history views should all work with large amounts of
information, and it therefore becomes necessary to provide convenient ways for the user to
choose which information is shown. In other words, the data, code and execution history
views need elision control.

Abstraction and elision techniques are evaluated using the point system described in
Table 5.1.

5.1 Data abstraction
Abstraction of implementation details is necessary to keep a data view of a nontrivial pro-
gram from becoming a bewildering mess of objects and references. Generally speaking, the
user should have control over the degree of abstraction in order to help him concentrate on
the parts of the program that he is working on instead of the internals of libraries.

The abstract data structures must be capable of referring to other data structures and
other data structures must be able to refer to both the abstract data structures and other data
structures inside them. In order to allow this, the abstraction must not break apart objects
or classes into separate parts, as this makes it hard to refer to the object from elsewhere. As
most abstract data structures will probably be implemented as objects or groups of objects
of the same or similar classes, it makes sense to have the data abstracter receive an object

Score Meaning
- The technique does not do anything to satisfy this criterion.
p The technique does not satisfy the criterion on its own, but does some-

thing that is useful with regard to the criterion.
pp The technique satisfies the criterion reasonably well in many cases.
ppp The technique satisfies the criterion very well.

Table 5.1: Scoring system for evaluation of elision and abstraction techniques

43
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and work out a representation for it.
In visual testing, producing an abstract data view consists of two tasks:

• Identifying the data structures that should be abstracted and the abstraction to use for
each data structure.

• Converting the data to the abstracted form.

5.1.1 Identification by class or interface
In languages with an extensive standard library, such as Java, a large amount of useful data
structures and interfaces are readily available to the programmer. Because of this, many
Java programs use the standard data structures to provide convenient implementations of
abstract data types. Recognising the classes that implement these data structures, which are
part of the Java API standard [57], allows a large amount of data structure implementation
details to be abstracted away. In this fashion, several data structures that can reasonably
be displayed as arrays or lists, e.g. java.util.HashSets and java.util.LinkedLists,
can be shown as arrays or lists instead of displaying their underlying implementation as
debuggers usually do.

Essentially, the user has, in writing the program, explicitly marked several common
ADTs (abstract data types) and FDTs (fundamental data types) as such. Not making use of
this added information would be wasteful.

Although program visualisers usually use type definitions to determine the appear-
ance of objects, most of them do not make use of prior knowledge of standard library
routines. Instead, many of them (e.g. Eliot [58] and the Korsh-LaFollette-Sangwan sys-
tem [32, 33, 50]) require the inclusion of special type definitions in the user program.
However, Tarraingím uses the interfaces of objects to monitor changes to the objects and
examine the objects [40].

Naturally, this technique can be generalised to data structures created by users, although
this shifts the responsibility for adding support for the data structures to the visual testing
tool onto the user.

Collections

Any object that implements the java.util.Collection interface can be considered a
group of objects [57]. This group of objects can be shown as a list or a table. The imple-
mentation details of library classes that implement java.util.Collection are usually ir-
relevant from the programmer’s point of view, and should be hidden by default. To provide
additional functionality, some of the implementations and subinterfaces of Collection,
such as Set and List, can have separate abstractions adapted to their specific properties.

Maps

The java.util.Map interface lends itself to abstraction in a similar way to Collection.
The simplest visualisation is as a list of pairs, in which each pair consists of a key and
a value (an object reference which can be displayed as a reference or a nested object, as
usual).

Wrapper classes for primitives

The wrapper classes for primitives in java.lang can be shown as the primitives they con-
tain.

Plots

The plots discussed in section 4.2.3 can also be considered abstractions of arrays.
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Graphics

Graphical objects (such as java.awt.Images or objects that have a paint method that
draws the object onto a specified java.awt.Graphics object) can be displayed graphi-
cally, instead of as objects. The paintmethod is used in subclasses of java.awt.Component
to define the appearance of components, so the easiest way to detect this is to look for sub-
classes of java.awt.Component.

Many of these objects will probably be quite large, and in many programs most of them
will probably be user interface objects with unchanging appearance. Cluttering the view
with these by default is probably not a good idea.

Sound

Sound files, such as javax.sound.sampled.DataLines and javax.sound.midi.Sequences,
can be shown as objects with “play” and “stop” buttons, which start and stop playback of
the sound. This can even be generalised to video clips, although this is probably not very
useful.

This addition is useless when debugging programs that do not process sound, so it is
not very important.

5.1.2 Identification by patterns
UWPI [23] attempts to recognise ADTs by looking for recognised patterns of use; by exam-
ining how the CDT is used, it can determine what ADT it implements. While Java simplifies
this process by encouraging the limitation of access to variables, it also provides predefined
data types, either in the language or in the standard library, for many of the ADTs recog-
nised by UWPI. Also, the type inference used by UWPI is inherently ambiguous in many
cases. Furthermore, UWPI’s data type inferencer concentrates on recognising different uses
of integers as e.g. Boolean variables or pointers, where a Java programmer would probably
use boolean variables and references. UWPI is therefore better suited for languages with
a limited set of primitives such as Pascal, C or C++.

This approach is not very useful on its own in Java, although it could be used as an
adjunct to recognising known structures. For example, a tree can be constructed in Java
by having a class of node objects, each of which contains a set of child elements. Here,
determining that the nodes form a tree requires determining that each node contains a set
of references to other nodes. To do this, we must first identify the set as such, and then
check that it only contains references to other nodes. Finally, the graph expressed by the
references must be shown to be connected and acyclic (if not, the resulting graph is not a
tree). This poses a problem as the contents of the tree must be known in order to verify
these properties of the references. Also, a structure that at one point appeared to be a tree
may later be found to contain a cycle.

Because of the risk of incorrectly identifying structures by allowing differentiation
based on properties that may change over time (for example, adding an edge may con-
vert a tree into a graph with a cycle), it seems best to limit this abstraction mechanism to
static analysis of the classes.

Linked lists

Linked lists have a simple structure: they consists of nodes that contain a link to another
node (the next node) and some other data (usually a reference to a content object). The
major problem with identifying linked lists based on their structure is that the references to
the following objects may induce a cycle. Furthermore, several different objects may have
the same next object, in which case the structure can be any graph where the out degree
of every vertex is 1. Although identifying linked lists and displaying them as tables would
provide a more compact representation for an easily implemented data structure, it is hard
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to prove that the lists stay separated from each other. Alternatively, if a node is referred to
from several different places, copies of the list can be shown in all of these places.

If a graph-like representation for references is used, linked lists will automatically be
shown as chains of elements without any of the problems mentioned above. The visual
layout may, however, not take into account that the linked nodes form a list.

In Java, it is arguably bad programming practice to implement linked lists that do not
conform to the java.util.List interface, so there is little reason to attempt to detect
linked lists based on their structure.

Trees and graphs

Trees and graphs are usually represented using nodes containing lists of children or neigh-
bours (adjacency lists). If references between objects are drawn using arrows between
boxes, graphs and trees of this type are automatically shown as graphs.

An adjacency matrix can easily be drawn as a graph; however, if one wishes to show
the nodes as anything other than integer indices, a vertex data array must also be specified.
Similarly, if adjacency lists are constructed using integer node indices, a mapping from
indices to nodes must be specified. Specifying these mappings must in practice be done
manually. For trees or graphs limited to a specific structure (e.g. binary trees), there may be
several separate variables that form the adjacency lists. Otherwise, the situation is the same
as for the general form. In conclusion, there seems to be little need to detect trees or graphs
automatically.

5.1.3 Accessors and modifiers
In Java programming (and to some extent in other object-oriented languages), it is consid-
ered good programming style to provide access to data stored in objects through methods
instead of allowing public access to fields. In fact, many books on object-oriented program-
ming (such as [26]) and even the Java language specification [21] insist on this, as it allows
much better abstraction and encapsulation than direct field access. One method (called an
accessor) reads the value, and another (optional) method (a modifier) writes it. These are
usually of the form1 (for a value called myValue of type Value):

Value getMyValue(); /* An accessor. */
void setMyValue(Value v); /* A modifier. */

Part of the time, accessors and modifiers are used to enforce access limitations on a
field. For example, to allow any class to read the value, but only subclasses and classes
in the same package to write to the value, one need merely make the variable storing the
value private, the accessor public and the modifier protected. Modifiers are also used
to check the validity of new data values before modifying object fields.

However, in some cases, accessors and modifiers may allow manipulation of a data
value in a different form than the form in which it is stored. For example, the toString
method in any Java object reads the data in the object and outputs it as a string. In these
cases, it may be more convenient to access the data using these methods rather than directly
access fields of the object. Essentially, these methods provide a way for the programmer
to easily access a value that cannot be accessed directly by reading and writing a variable.
Also, accessors and modifiers can be used to provide a common interface to data that can
be stored in many different ways using different types of objects. By supporting this type
of data access in a visual testing tool, we allow the user to examine his data in the same

1Actually, the naming conventions for accessors in [21] differ depending on the intended meaning of the
accessor. For example, an accessor that is supposed to convert the entire contents of an object into a value of type
Type is called toType. These other forms of accessors can be identified using the same techniques as the simple
case described here.
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way that he manipulates it in the code he is working with by exploiting an abstraction that
is already defined in the program code.

Accessors and modifiers can easily be identified if they are of the simplest possible
form (where field is a field of this):

private Value field;

Value getValue() {
return field;

}

void setValue(Value v) {
field=v;

}

Recognising methods of this type provides no information except that it shows that
a private field actually may be accessible outside the class in which it is defined. This
information may be useful for elision purposes, as it provides an easy way to distinguish
between private fields intended for internal state and private fields intended to be visible
outside the package through an accessor. However, this information provides no additional
abstraction.

If field can be a chain of fields (e.g. obj1.obj2.fld), a larger group of methods can
be recognised, although changing one of the object references in this chain changes the
field manipulated by the methods.

In the general case, the value manipulated by the accessor/modifier pair can be stored
in a huge number of ways; it can be split, combined with other variables, compressed, en-
crypted, serialised, converted, and so on. However, the method pair still has the property
that calling the accessor after calling the modifier returns the value passed as the parame-
ter to the modifier. Identifying accessors and modifiers that do complicated processing on
values and still have this property is a lot harder; for example, proving mathematical equa-
tions is actually a subproblem if arithmetic operations are allowed. Some simpler cases are
analysable, such as those where data flow analysis allows one to prove that if getValue()
is immediately preceded by setValue(v), the value returned is always v. However, these
cases only constitute a subset of the set of accessor and modifier pairs, and performing the
data flow analysis is complex, although it is a well known problem in compiler design.
Also, this technique cannot be used to identify accessors that do not have corresponding
modifiers.

On the other hand, simply accepting every pair of methods with the right return and
parameter types will probably yield a lot of false positives. The simplest method of filtering
out false positives is to assume that the user’s code follows the common naming convention
of calling the modifier set〈value〉 and the accessor get〈value〉 for any name 〈value〉.

Another criterion for an accessor is that it has no side effects; in other words, it does
not change the state of any object. Specifically, the method and all the methods it calls
contain no assignments to non-local variables. Checking this property requires parsing the
potential accessor (either as source code or bytecode) and the code of all the methods
it calls and ensuring that all variables that are set are local. This is quite a complicated
solution, and it does not take into account the possibility of multiple counteracting side
effects. However, when extracting data values to show in a debugger, a lack of side effects
is a very useful property, as the debugger may execute the accessor at any time. Obviously,
executing methods with side effects in a nondeterministic fashion (from the debuggee’s
point of view) is a good way to introduce new problems.

The ideas presented here for accessor/modifier pairs can also be applied to another com-
mon idiom: methods that add and remove items from collections and return the collection
or an iterator for it. The problems with identifying these methods are more or less the same
as for accessors and modifiers.
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If read-only access is sufficient, the identification process can be limited to identifying
accessors by looking for methods that return a value and have no arguments or side effects.
This can be done automatically.

The values manipulated by accessors and modifiers can be considered equivalent to
fields for the purposes of visualisation. As these values do not always represent the contents
of real data fields, I will refer to them as virtual fields.

Executing accessors or modifiers on an object while it is being modified may cause
invalid results, infinite loops, deadlocks or exceptions to occur in the accessor or modifier
if the accessors and modifiers are not thread-safe. If they are thread-safe (and no thread-
unsafe operations are being performed on the object), the accessor or modifier may only
deadlock. Deadlocks and other aberrant behaviour can be avoided by running the accessor
only when it is known to be safe to do so. For a properly designed object with accessors and
modifiers, it is always safe to run an accessor or modifier when no other method is running
on the object.

When using logging, virtual fields generated by accessors can only be shown reliably
for historical data if the accessor was executed and its return value was stored at the time
the data was current.

5.1.4 User-defined abstraction
In ambiguous cases (e.g. a tree implemented using a map from each node to its parent, an
array that can either be viewed as a table or a graph or an accessor/modifier pair), cases
where the actual implementation of a data structure is interesting, or cases where a new
known structure is introduced, the user may want to specify a different representation than
the default. A list of possible interpretations of a data structure (including the default gen-
eral representation for unidentified objects) can be used for this.

The user may also wish to specify which fields of an object form the parts of the data
structure (for example, in a map, the user may need to specify which field contains the keys
and which contains the values). In order to do this, the user must also point out the variables
that form the parts of the abstract data structure.

Many program visualisation systems rely heavily on manual identification and map-
ping of data structures to visualisation operations (e.g. Lens and Leonardo [16, 37, 38]).
The mapping can be specified using a graphical user interface (as in Lens) or using a pro-
gramming language (as in Leonardo).

Manual identification is very flexible, but it easily becomes time-consuming and error-
prone if visualisations and abstractions cannot be reused easily. These problems are exac-
erbated if the visualisation is programmed as a part of this process. For example, Lens is
not well suited for debugging for this reason [24].

Lifted fields

Instead of displaying the value of a field of an object, the user may wish to display the
value of a field of an object that can be reached by following references in the object to be
displayed. The user should be able to produce a chain of fields to traverse until the desired
field is found; this field can then be shown in the object to be displayed as a virtual field. In
other words, a field is lifted out from a referenced object, producing a lifted field.

5.1.5 Combining abstractions
When visualising complex data structures, it is important to be able to combine abstrac-
tions. This allows the user to easily create complex abstractions that would otherwise re-
quire additional code.
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In order to do this, abstractions should be designed to read and write data in the same
form as the visualiser. This means that any abstraction that can be visualised can also be
used as part of a combined abstraction.

As an example consider showing the attributes of an XML element using the DOM
(Document Object Model) API (a part of the standard Java API [57]). The attributes are
returned as a map containing attribute objects with names and values. Using two accessor
virtual fields, the names and values of the attributes can be extracted as fields. The map can
be converted to a table of attributes by specifying the methods to get the table length and
an item in the table. This table of pairs can then be interpreted as a map by specifying the
fields of the pairs to use.

5.1.6 Data abstraction model
The abstraction techniques described in this section can be expressed using virtual fields
and convertors. Convertors output objects that implement the interface of one data type
based on the data in an object of another type. For example, the abstraction for Collections
described earlier can be implemented as a convertor that outputs a table and uses the
Collection interface to read and write elements.

Convertors can have settings that determine how they interpret the structure they convert
from and properties of the structure they convert to. For example, a convertor that produces
an array from a structure with methods to get and set an element has at least three settings:
the two methods to use and the field to read the length from. A convertor applied to a
specific type of data structure with specified settings can be considered an interpretation of
the real data structures. By applying convertors only when necessary, a lot of storage and
processing can be avoided.

All virtual fields can be rewritten as a field containing a suitable convertor. Therefore,
only one single virtual field type is necessary: a converted field.

An interpretation defined for objects of a class is also valid (syntactically, at least) for
objects of its subclasses. Similarly, an interpretation defined for an interface is valid for
classes that implement it. This means that the interpretations defined for the ancestors of
a class (the ancestors of a class or interface are its superclass, the interfaces it implements
and their ancestors) can be used for the class. Similarly, if no default interpretation has been
specified for a class, the default interpretation of any of its superclasses or interfaces can
be used.

Deciding which ancestor’s default interpretation should be used is not trivial. However,
a few useful rules of thumb can be devised:

• If a class has its own specific interpretation, it is usually better suited for that class and
its subclasses than any ancestor’s view. Similarly, the interpretation of an interface is
better for classes that implement the interface or a subinterface of the interface than
the interpretation of a superinterface of the implemented interface.

• If a class is similar to the class for a which a visualisation is defined, the visualisation
will probably work reasonably well.

Thus, assuming we can quantify “similarity” (or conversely, “dissimilarity”) between
two classes or a class and an interface, we have an ordering on the suitability of interpreta-
tions of ancestors, and can choose the most suitable interpretation. One possible definition
of dissimilarity between a class and a superclass of it is the amount of overridden or added
methods. The dissimilarity to an interface can be defined as the amount of added methods.

To allow the user to switch between different valid interpretations of an object easily,
each class should have a set of defined interpretations. The user can then easily choose
which one is used for visualisation. If these interpretations are identified by name, they can
be used as input for convertors to combine abstractions wihout affecting the visualisation.



CHAPTER 5. ELISION AND ABSTRACTION 50

Technique Abstraction Auto view control Manual view control
Identification by class/interface pp pp p

Identification by patterns p pp -
User-defined abstractions ppp - pp

Table 5.2: Data type identification techniques

5.1.7 Evaluation
Producing a data representation with abstraction involves two tasks: identifying the data
structures and converting them into a suitable form.

All the identification techniques examined here require manual definition of some form
of rules for the recognition of implementations of a data structure as well as a suitable vi-
sualisation for the data structure. The different approaches only differ in how much of the
work is done by the user (reflected in the automatic view control rating), how well the user
can adapt the visualisation to his needs (manual view control) and how close the visualisa-
tion can be to the user’s conception of the data structure (abstraction). Identification rules
should recognise as many of the data structures to which a visualisation can be applied as
possible.

Pattern-based recognition techniques require the definition of usage rules for the data
structure. The rules for this type of identification can be hard to produce, and they can
usually only detect a specific implementation of a data type. Due to these problems, their
applicability is limited.

The best approach seems to be to extract as much identification information as possible
from the program itself. For each class in an object-oriented program, the implemented
interfaces and superclasses are specified. This, combined with a set of visualisations for
known data structures that can easily be extended and adapted, should cover most cases.

Identifying by class or interface is automatic, reliable and desirable as long as a view
where the known data structures have been abstracted is acceptable. In practice, some man-
ual intervention may be needed to get the desired view. Table 5.2 summarises the evaluation
of data abstraction techniques.

The data abstraction model described in 5.1.6 is primarily based on known data struc-
tures and manual identification, as these techniques complement each other and are simpler
than identification by patterns.

A lot of different ways to extract information from a data structure once it has been
identified exist. The suitability of each method depends on the data structure to which it is
applied and the desired visualisation. Properly designed data structures in object-oriented
programs can usually be manipulated through their methods.

5.2 Data elision
Elision control (allowing the user to decide what to leave out) is of great importance in the
data view of a debugger or program visualiser. On the one hand, all variable values should
be accessible. On the other hand, displaying the entire state of a program will in most cases
cause the interesting information to be drowned out by irrelevant detail. As the tool cannot
always guess correctly what information the user is interested in, manual elision control is
necessary. However, in order for the user to be able to effectively use the tool, the need for
manual elision control should be minimised. Thus, the tool must be able to make the most
common elision control decisions automatically.

In the context of a visual testing system, the goals of data elision and data abstraction
overlap somewhat. For example, implementation details of library routines can be hidden
both by abstracting the implementation of the data structure as described in section 5.1 or
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by simply hiding the library object or its contents. However, while data abstraction provides
access to the information in a form that is easier to use, data elision simply hides it.

5.2.1 Automatic elision control
In most cases, the user is not interested in the implementation of library classes. There-
fore, library classes and their instances should be shown at as high an abstraction layer as
possible with all internal state hidden. Also, library classes and their instances should (un-
der normal circumstances) only be shown when they are referred to by classes in the user
program.

The detail level shown when an object is displayed should be limited to ensure that the
graphical representation of the object is not unreasonably large. In particular, this means
that large objects should not be displayed fully (DDD hides parts of objects that are too
large to achieve this). Two common causes are objects with large amounts of fields and
objects with large amounts of other objects nested within them. In both cases, hiding the
contents of large objects by default helps a lot.

Some objects can vary a lot in size; these are arrays and strings. For strings, the simple
rule of truncating the string at a specified length often suffices. For arrays, a more general
idea is required. One approach is to define a maximum size for the graphical representation,
and remove layers of detail until the graphical representation is small enough. In the case
of nested arrays, this would mean that some or all of the levels of arrays would be elided.
Another approach is to display the array elements by default only if they are sufficiently
few.

5.2.2 Manual elision control
Visual debuggers, e.g. DDD and GVD, usually display data only if the user has explicitly
specified that he wishes to see it. This choice is usually made one object at a time, with the
ability to hide and reveal elements of nested data structures such as arrays. This is easy to
implement and quite efficient, but is also quite tedious to use; in order to examine a large
data structure, the user must spend a lot of time pointing out objects to show (or hiding
irrelevant information). On the other hand, this provides very fine elision control.

Algorithm simulation tools, such as Matrix, by default display all the data structures
that are being manipulated by the user at the FDT level. Many visualisers, such as Jeliot
and JDSL, have very limited elision control, as they are primarily designed for educational
use with simple examples [29].

For practical use, coarse-grained elision control must also be available. In most cases,
the programmer is interested in testing or examining a specific part of a program. Instead
of controlling the visibility of one object at a time, showing and hiding classes and all their
instances at a time would be useful in these cases. Allowing the user to show or hide all
of the instances of all classes in a package would allow the user to conveniently examine
everything that happens in a specific package.

The manual elision control should always allow anything hidden by automatic elision
control to be shown.

5.2.3 Evaluation
Data elision and abstraction overlap somewhat, as abstraction also elides implementation
details. Automatic and manual elision, if implemented correctly, essentially increase the
automatic and manual view control ratings (respectively) as shown in Table 5.2 by one
point. This evaluation is based on the improved view control and flexibility provided by
these techniques.
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Technique Causal understanding Manual view control
Structure-based elision - pp

Slicing p p

Table 5.3: Code elision control

5.3 Code elision
Obviously, showing all of the code in a program at once is unpractical in all but the most
trivial cases. Therefore, the user must be allowed to choose which code is shown.

5.3.1 Structure-based elision
The most common way to filter source code views is to allow the user to select source
code files to view. This can be done using whatever traditional file selection techniques (an
“open file” dialogue box, for example) or using a package tree (see Subsection 4.4.4). This
is easy to implement, and corresponds closely to the way in which most developers edit
their code.

If a source code file contains a large amount of methods, it may be convenient to allow
the user to choose a method to view. As noted in Subsection 4.4.4, the methods in each
class can be added to the package tree. Alternatively, a list of methods from which the user
can choose can be shown for each class (e.g. as a drop-down list box or pop-up menu).

The idea of selecting source code to view can be extended higher up in the code struc-
ture hierarchy by allowing the user to select code to view a package at a time. This is too
coarse-grained to be useful.

More fine-grained alternatives are possible, such as collapsing blocks in the source
code (in C, C++ and Java, blocks are delimited by curly brackets ({})). Implementing this
requires at least partial parsing of the source code files.

5.3.2 Slicing
Static or dynamic slicing, as described in subsection 4.5.11, can also be used to elide parts
of a program that could not have affected a specified variable value at a specified point in
the program execution. Dynamic slicing can be used to find the parts of the program that
could have affected the value that was actually stored in a variable at some specified point
in the past, while static slicing can be used to examine all of the code that can possibly
affect a variable’s value at a specified position in the program code.

5.3.3 Evaluation
The code elision techniques can be evaluated according to how well they support causal
understanding of the program and the degree of manual control over the view they provide.
This evaluation is shown in Table 5.3.

5.4 Execution elision
The full execution history of a program is in most cases far too large to visualise completely.
Therefore, mechanisms to limit the view to interesting parts of the execution history are
absolutely necessary.
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5.4.1 Call tree-based elision
By choosing which branches to view in the call tree, the user can make it easier to con-
centrate on a part of the execution history. In multithreaded programs, this also limits the
execution view to a single thread, as each thread has a separate call tree.

Choosing the outermost call

For visualisations that show the operations or calls performed by a called method, one ob-
vious elision technique is to choose the method call to use as the outermost visible method
call. In the call tree visualisation, this is the root of the tree. In the connected objects,
collaboration diagram and sequence diagram visualisations, this is the first message. This
elides all of the operations executed before this method invocation and after its return. This
elision type is useful when the user wants to examine the operations executed during a
specific method invocation.

In the execution stack view, a similar elision can be performed by removing all items
below a certain point. This is not very useful in practice unless space is very limited.

Collapsing call contents

In execution history views, the operations performed by a method can be left out, meaning
that the method invocation is represented as a single operation. In the call tree view, this
means that a branch is collapsed to a single node. In the connected objects, collaboration
diagram and sequence diagram visualisations, this removes the arrows representing opera-
tions inside the collapsed method invocation and objects that are no longer referred to by
an operation.

A similar operation can be used on annotated objects and hybrid diagrams to keep the
execution history view manageable. By default, the annotated objects or hybrid diagram
should only show the operations performed by one method invocation, including the calls it
made. The user could then expand any of the displayed method calls to show all operations
executed by the corresponding method invocation.

This elision type is useful when the user knows what has happened during a method
invocation or does not need to know. Library call contents should always be elided by
default, as the user usually does not need to know what library code actually does.

5.4.2 Filtering
By leaving out certain types of operation from the execution history view, the user can
concentrate on the remaining types of operations.

Filtering by operation type

The user is often only interested in a certain type of operation. For example, variable reads
have no impact on the state of the program and are uninteresting when one is looking for
the part of a program that sets a specific variable. It is therefore useful to be able to choose
which operations are shown in a history view. Most method calls must be left in the call
tree to allow operations performed by these methods to be shown in the right place in the
tree.

Filtering by accessed element

When the user wants to find a reason for a value written to a variable or study how the
value of variable changes during the execution of a program, it is useful to be able to limit
the visible operations in a history view to operations that access a specified variable. In the
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Technique Causal understanding Manual view control
Call tree-based elision - pp

Filtering - p

Dynamic slicing p p

Table 5.4: Execution history elision control

case of call trees, most of the method calls must remain in the tree to allow the variable
accesses to be placed within the correct method invocation.

5.4.3 Dynamic slicing
Dynamic slicing, as described in subsection 4.5.11, can also be used to elide parts of a
execution history that could not have affected a specified variable value at a specified point
in the execution of the program.

5.4.4 Evaluation
The execution history elision techniques can also be evaluated according to how well they
support causal understanding of the program and the degree of manual control over the
view they provide. This evaluation is shown in Table 5.4.

5.5 Summary
Used on its own, abstraction does not provide good view control, unless data structures are
manually identified and their visualisations manually specified (in which case the elision is
performed as a part of the abstraction).

As can be seen in Subsection 5.2.3 and Tables 5.3 and 5.4, none of the elision control
techniques on their own provides good causal understanding or view control. However, they
can be used to enhance the effectiveness of the code and execution history representations
in causal understanding. Also, the techniques complement each other well. The manual
view control rating of a tool (as defined in Table 3.1) in which all elision control techniques
are available and used together with manual abstraction control should be ppp.



Chapter 6

Controlling the debuggee

Giving the user the ability to control the program that he is examining is an important part
of visual testing. This corresponds to execution control and data modification as described
in Section 2.1.

6.1 Data modification
Being able to change data values interactively in a running program allows the user to try
out the effect of different data values on a part of a program without writing additional
test code or invoking methods. This ability can also be used to construct inputs for method
invocations.

6.1.1 Textual editing
One way to change the value of a variable is to select it (in the data view or by enter-
ing its name) and enter a new value. This, of course, only works well if the variable can
be meaningfully and unambiguously expressed as a string. This technique is unpractical
when working with object references, unless they can be expressed using other variable
values or similar expressions. However, primitives can easily be edited textually using the
representations described in Subsection 4.1.1.

If only a simple value can be entered, this is easy to implement but tedious to use. If
more general expressions are allowed (including method calls; see 6.2.1), this technique
is much harder to implement, but more flexible. Source code for this type of expression
evaluator is widely available (e.g. in the JDB sources), but using it may cause licensing
problems.

6.1.2 Graphical reference manipulation
One way to specify that one wishes to change a reference variable to point to another object
is to drag the object onto the reference variable. Alternatively, if the reference is displayed
as an arrow, the end of the arrow can be moved to point to the desired object. Both of these
techniques appear in Matrix (for nested and referenced objects respectively).

6.1.3 Graphical primitive entry
Entering primitive values graphically is possible, but not very useful in the general case.

In cases where precision is not important and the range of the value is known, floating
point values can be specified using a variety of sliders, knobs and other GUI elements.
However, in most languages the range of a floating point variable is too large to allow
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useful data entry in this fashion. Sketching curves using a mouse may be useful for entering
information into floating point arrays, but only in a very limited set of circumstances.

Textual primitives such as characters and strings can in most cases only be meaningfully
manipulated textually.

6.1.4 Graphical expression entry
Expressions can be entered graphically by constructing a tree consisting of operators and
methods (non-leaf nodes) and values (leaf nodes). The children of each operator node are
the arguments the operator is to be applied to. Operators can be selected from a predefined
list. Objects, variables and methods can be specified by clicking them in the data view or
dragging them from the data view. Primitive values can be copied from the data view (e.g.
by dragging) or entered graphically or textually.

This is essentially the same as editing a parse tree for an expression graphically. In prac-
tice, this technique is much more time-consuming than typing the corresponding expression
and less familiar to the programmer.

6.2 Method invocation
In order to invoke a method, one must select the method to run, the object to run it on
(for non-static methods) and the arguments. These can be selected in several ways. For
the purposes of a user interface, object creation can be viewed as invocation of a (static)
constructor method.

6.2.1 Textual invocation
Textual method invocation can be handled essentially like editing of values (see section 6.1.1);
the user enters an expression (which may include method calls) to be evaluated. The result
of the expression is then printed textually or shown graphically. This is used by most de-
buggers, although it requires the ability to parse a significant part of the language to be
useful.

6.2.2 Graphical invocation
The object or class to call a method on can easily be selected by pointing and clicking if
methods are shown for objects or the methods are easily accessible through a pop-up menu.
However, choosing the arguments for a method call is harder. In the case where a method
requires no arguments, a single click is sufficient. In the case where a method requires one
argument, this argument can be selected e.g. by dragging and dropping the object to be
used as a argument onto the method to be run in the object on which the method should be
run. E.g. Matrix uses this technique.

In the general case, the user must be allowed to select several arguments (both prim-
itives and references). Primitives are easily specified using textual input, while references
are more easily specified using drag and drop. For clarity, the primitives should be grouped
together in a method call object that can either be nested in the box of the object containing
the method or shown separately, as in BlueJ [27]

See also Subsection 6.1.4 for another way to invoke methods graphically.

6.3 Starting and stopping execution
An important part of debugging is being able to interrupt the execution of the debuggee
and examine its state. Most current debuggers provide breakpoints, single stepping and
watchpoints to address this need.
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Breakpoints were introduced in FLIT [55] and have changed little since that time. A
breakpoint is essentially a request that a program be stopped at a specified line or statement.
In debuggers with graphical user interfaces, breakpoints are usually specified by pointing
at a source line and requesting from a menu that a breakpoint be put there. In textual
debuggers, the source code file and line number are usually specified.

Single stepping is a feature that allows the user to execute one line, statement or in-
struction at a time of a program. It is often used to examine the execution of a program in
detail.

Watchpoints (also known as watches) are requests that a program be stopped whenever
a variable is accessed or modified. They are usually specified by entering a variable name
or pointing at a variable in the source code or data view.

When examining a multithreaded program, it is usually helpful to be able to be able to
disable the execution of threads at will. This helps the user concentrate on the interesting
parts of execution and aids in debugging race conditions.

6.4 Summary
Even in a graphical user interface, textual entry for expressions and primitives is a lot
more practical than graphical entry. Editing references by dragging arrows is often more
convenient than manipulating them indirectly through reference variables. It is easier to
select objects by pointing and clicking than by referring to them textually using reference
variables. A combination of textual and graphical input seems to be the best way to select
values and construct expressions for data modification and method invocation purposes.

Breakpoints, watchpoints and single stepping are more or less taken for granted nowa-
days, and should therefore always be available in any tool intended for serious use.



Chapter 7

Implementation

Implementing a visual testing tool is by no means an easy task. This chapter describes prob-
lems related to implementing a visual testing tool and possible solutions to these problems.

7.1 Connection to debuggee
As the process of connecting a debugger to a running program is highly dependent on the
language and the technique used to execute programs run in it, this section is limited to
Java code running on a JVM (Java Virtual Machine).

7.1.1 Instrumentation of code before or at compilation
Many program visualisers, such as Eliot [58], Jeliot [22], VCC [5] and UWPI [23], auto-
matically add visualisation code or calls to visualisation code to programs before or during
compilation. In order to do this, a preprocessor must be written to examine the program and
add the visualisation. While this can be done portably, using this approach requires that all
code that one wishes to analyse be compiled by or preprocessed before compilation by the
visualiser’s preprocessor or compiler. This approach also requires extensive additions to all
code that is run in order to support e.g. examining the execution stack (for example, every
method call and return must be augmented to update a copy of the stack). Furthermore,
instrumenting the code before compilation provides only limited control over execution
order.

The advantage of instrumenting code at compilation is that it is easy to maintain a map-
ping between the compiled code and the source code. For example, slicing and dependence
graphs work better with detailed information on which statement corresponds to which
bytecode operation.

Adding operations to methods may change their execution times and result in different
(but equally valid) execution orders in some parallel programs.

This approach requires full source code for all classes that are to be instrumented, in-
cluding the standard library.

Special care must be taken when using instrumentation to ensure that variable writes
cannot occur between a variable read or write and its corresponding instrumentation call.
This is not a problem for local variables. However, fields and array elements can be ac-
cessed by many different threads at once. Adding locks as a part of the instrumentation is
only a partial solution, as uninstrumented code may be able to access the variables. Without
the additional locking, a multithreaded program may be able to interleave writes and reads
in such a way that the debugger shows incorrect variable values.
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7.1.2 Instrumentation of compiled code
Visualisation calls or other data collection mechanisms can also be added to code that has
already been compiled by adding bytecode instructions to the method definitions in the
class files. This can be done using a custom class loader that instruments the code when
it is loaded, or by instrumenting the class files in advance. ODB can use either of these
techniques. When a modified class loader is used, code that is loaded using a user-defined
class loader will not be instrumented. [35]

By adding a debugger call to every bytecode operation in the debuggee, all state changes
to the debuggee caused by bytecode can be tracked. In some cases, it may be useful to call
the debugger both before and after the operation to find out both values read and values
written by the operation. However, not all operations are bytecode; any non-trivial Java
program must execute native code for e.g. I/O. This native code may read and modify the
state of the objects and classes in the JVM using the Java Native Interface (JNI). Therefore,
any system that relies solely on bytecode instrumentation to collect information on state
changes will produce incorrect results if a native method modifies objects in the program.
Similarly, in order to track execution of system code, the standard libraries must also be in-
strumented. Library classes that are not instrumented will cause similar problems to native
code.

As with instrumentation of code at compilation, instrumentation after compilation may
change the concurrent behaviour of the program. Similar care must also be taken to ensure
that read and write operations maintain their order in the face of concurrency.

7.1.3 Instrumented interpreter
By running the user programs on an interpreter (such as a Java Virtual Machine), one can
examine and modify every aspect of the running user program by instrumenting the in-
terpreter. Leonardo, for example, implements this approach by running programs on an
emulated machine.

In the case of Java, modifying the JVM to collect the necessary information seems easy
at first. However, modifying the Java Virtual Machine causes a few problems:

• The solution is tightly bound to a specific version of a specific VM. This effec-
tively means that the debugger must be rewritten at least partially every time the VM
changes. It also complicates support for multiple platforms.

• Modularity suffers; most VMs are probably not designed for internal modifications
and their internals are often not as well documented as the APIs they implement. This
makes the process of editing the VM more error-prone than accessing it through a
published API.

Several JVMs are available freely as source code. Adapting one of these should not
be too hard. Unfortunately, no freely available JVM seems to exist that includes support
for all the native methods in the standard Java library. For this reason, a lot of software is
compatible only with Sun’s JVM and library implementation, which limits the generality
of a solution based on one of the free JVMs. Sun provides source code for their JVM, but
the license is complex and has some interesting side effects, such as giving Sun the rights
to do practically anything they like with everything you write that conforms to a part of the
Java specification (including, arguably, work that is not based on their source code).

In theory, the Java language can be interpreted directly from source code, although the
most common solution by far is to compile it to bytecode and interpret the bytecode instead.

7.1.4 JPDA
The Java Platform Debugger Architecture or JPDA [71] provides support for easy con-
struction of debugger applications. It consists of:
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• JVMDI (Java Virtual Machine Debug Interface), an interface used by debugger back-
ends running in the same process as a JVM to read information from the JVM.

• JDWP (Java Debug Wire Protocol), a communication protocol used to transfer infor-
mation between a debugger and the JVM that is running the debuggee.

• JDI (Java Debug Interface), which is a high-level (from a debugger implementation
standpoint) interface that allows a debugger to access a debuggee running in another
JVM. Sun’s implementation of JDI uses JDWP and JVMDI.

Essentially, every JVM that supports the JPDA is already instrumented to provide a lot
of information for debugging purposes. Also, the compiler can produce extra debugging
information that JPDA can make use of, such as mappings between bytecode and source
code positions.

JDI provides support for examining the state of the running program fully (objects,
classes and stack) and also modifying the state of the program on the Java program level;
examining the actual memory content and low-level JVM state (such as the operand stack)
is apparently not possible. It also supports debugger-controlled object instantiation and
method invocation. One possible problem with the JDI is that it does not appear to support
a convenient way of keeping track of all instances of a specified class. It also does not pro-
vide a way to execute parts of methods or watchpoints for local variable or array element
accesses. It also may or may not support stepping one bytecode operation at a time; this be-
haviour is implementation-dependent, although Sun’s JVM appears to step one bytecode at
a time when asked to execute a minimum step. However, unlike any instrumentation-based
methods, JPDA can also track accesses to Java objects performed by native methods. [71]

If operations can be reliably executed one at a time, this can be used to trace the ex-
ecuted operations, in which case explicit notifications for variable modifications, object
creation and other interesting events are only needed for native methods. In order to work
properly despite native methods and JVMs that may execute several operations in a sin-
gle step, the system must be able to detect situations where operations have been executed
unnoticed and check all the data structures in the program.

Using the JPDA is an easier and more portable solution than modifying the JVM. For
this reason, most Java debuggers use the JPDA either directly (e.g. JDB) or indirectly (e.g.
DDD and GVD use the JPDA through JDB [62, 63, 67]).

JPDA does not appear to provide any mechanism to list the classes available for loading.
However, it does provide access to the class path used by the system class loader. These
directories can then be scanned using standard directory listing techniques. Classes can then
be loaded by invoking the system class loader on the debuggee using JDI method invocation
(java.lang.ClassLoader.getSystemClassLoader().loadClass(〈class〉)).

Visualisations that require exact knowledge of the execution of the program, such as
dynamic dependence graphs, cannot be implemented using JPDA unless source code or
bytecode instrumentation is used in addition. This is described in more detail in Subsec-
tion 7.1.5.

7.1.5 Hybrid debuggee connection
The only instrumentation technique surveyed here that provides access to all the informa-
tion needed for a visual testing tool is JVM instrumentation. However, this technique is
unpractical due to maintenance and licensing issues. As the techniques surveyed here have
different weaknesses, combining them may lead to a satisfactory solution.

The problem with concurrent reads and writes to variables disappears if the debuggee
is suspended during the interval between a variable read or write and the corresponding
message to the debugger. This can easily be implemented using JPDA in at least three
ways:
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• The read/write operation is actually performed by the debugger instead of the de-
buggee. In other words, the instrumentation process replaces variable reads and writes
with read/write requests to the debugger.

• The debugger suspends all other threads while the read or write is being performed.
This has the advantage that the original variable operations can be left in the code.

• The read/write operation is detected by JPDA and JPDA notifies the debugger before
anything else happens in the JVM. Unfortunately, this solution only works for fields.

Tracking execution of uninstrumented code

Instrumenting the code during or after compilation provides a very accurate picture of what
the instrumented code does. JPDA generates messages for all object field reads and writes
and method calls, including those made in uninstrumented code. This is enough to narrow
down the modifications made by a native or uninstrumented method somewhat.

Specifically, the set of data input to an uninstrumented method is a subset of the union
of the following sets:

• The method’s parameters (P).

• Values of accessed object and class fields (F).

• Any value reachable from an array reference belonging to P∪F .

Similarly, the set of data output by an uninstrumented method is a subset of the union
of:

• Any modified object and class fields (M).

• Any new arrays (N).

• The method’s return value (R).

• Any value reachable by array element accesses from an array reference in P∪F ∪
M∪N∪R.

Thus, the debugger need not check everything accessible from the arguments of the
native method and static fields for modifications after a native method is executed. The
additional information from JPDA thus prevents native and noninstrumented methods from
corrupting the debugger’s copy of the debuggee’s state.

This is not enough information for accurate data dependence analysis of native and
uninstrumented methods, even if they are treated as single operations. However, approx-
imating the in and out data sets of the methods as above ensures that all dependencies
involving a native method are shown. Some spurious input and output dependencies may
be shown for array elements.

One of the problems with the above is that modifications to objects belonging to unin-
strumented classes must also be tracked. This will slow the entire debugging process down
and cause a lot of irrelevant information to be logged. This can be avoided by ignoring
any changes made to objects belonging to uninstrumented classes. This means that most of
the internals of library classes will not be tracked in any way, which should mitigate the
performance loss noticeably. Library objects can be tracked using accessors and modifiers,
which limits the logged changes to those visible to the user.
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7.1.6 Evaluation
Combining the virtual machine instrumentation and control facilities made available through
JPDA with bytecode instrumentation provides access to the debuggee that is almost as good
as an instrumented JVM and has none of the associated licensing and maintenance prob-
lems. Until such time as proper instrumentation is available (through an extension of JPDA
or a new API) in a JVM suitable for production use, the bytecode instrumentation and
JPDA hybrid solution seems to be preferable.

7.2 Manipulation of program history
Being able to step backwards through the execution of a program (similarly to the way
in which algorithm animation usually allows stepping backwards) would allow the user to
track down bugs by backing up from a state known to be wrong (e.g. an exception) until
the bug itself is reached.

If the execution history of the program is displayed as a call tree, a list of events or a
timeline, the user can easily move around in the execution history by selecting items in the
tree, list or timeline. Alternatively, the user may be given controls that allow him to step
backwards and forwards through the history.

7.2.1 Animation based on logging
The most straightforward way to provide animated display of the execution of a program
is to store all the information needed to show previous frames of the animation, and then
simply trace back and forward through this. To keep data storage requirements down, only
the differences between successive displays should be stored. For example, Matrix stores
all assignment operations in a special animator object [29].

In the case of a debugger it is not trivial to decide what information should be stored.
Ideally, all changes to the state of the program would be stored which would allow the
user to look at every value of every variable. However, this could require a lot of memory
in complex cases. Therefore, the stored values should be limited to those that are actually
interesting to the user. For example, in most cases, the values of the private fields of library
classes are completely uninteresting.

This approach is easier to implement. However, it prevents the user from stepping
backwards, changing something and executing the program from the earlier point with the
changed value; in other words, the history is read-only. On the other hand, using logging
(as in RetroVue and Matrix, for example) causes less problems with garbage collection, as
it ensures that all interesting values are copied.

Even though this approach is limited compared to fully reversible execution, it removes
a lot of the trial and error from the usual process of finding an error, in which the user
typically executes the program past the first manifestation of the error when debugging and
has to restart execution. With logging, the user can rewind the data view to the earlier stage.

Convertors as described in Subsection 5.1.6 cause problems when logging is used to
store the execution history instead of reverse execution. When logging is used, the de-
buggee method calls needed by the convertor must be made while the debuggee executes; a
convertor cannot rewind the program and execute a method on past data structures. There-
fore, all the data needed by the abstractions must be extracted while the program is running;
I call the routines that do this extractors. Extractors are similar to convertors, and have the
same interface (except for the ability to extract further information) and applicability prop-
erties as convertors.
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7.2.2 Reverse execution
With the ability to reverse the execution of a program, the user could after backing up to a
bug manually correct the data structures and rerun the commands after the bug to check that
it has been correctly identified [3]. However, reversing the execution of a program in the
general case requires reversing everything the program has done. One way to do this is to
reverse each instruction on the machine level by constructing a reverse instruction for each
instruction where possible and saving any information that is lost when an instruction is
executed so that it can be restored when the instruction is reversed [3]. As long as the only
thing affected is the state of the JVM, this is not unduly difficult [15]. However, as soon
as the program starts interacting with anything outside the JVM (in other words, performs
any I/O, even local file access), the situation becomes a lot more complex.

Implementing reverse execution fully would require checking every available I/O op-
eration for side-effects that need to be reversed. Also, the desired semantics of reversing
some actions (e.g. keyboard input) are not clear. For example, putting a character back onto
a buffer when the read operation is reversed makes sense in some contexts (reading lots
of text from standard input), but is confusing in others (e.g. network applications). Imple-
menting reverse execution for software with more I/O capabilities than access to a simple
file system would require the ability to reverse every resource that a program can affect,
e.g. other processes on other machines.

Reverse execution is also quite hard to implement without modifying the machine on
which the code is running. While it is not unrealistic to modify a Java Virtual Machine
written in software, this is nonetheless a nontrivial task. Also, in order for reverse execution
to work properly, everything that happens in the machine must be logged. This leads to
very large execution logs. In conclusion, this approach seems unnecessarily complex and
provides little additional benefits at this stage. Leonardo supports reverse execution, but it
requires a specialised virtual CPU and a set of reverse system calls to do so.

7.2.3 Evaluation
Reverse execution can theoretically provide a minor improvement in execution control, but
it has too many unsolved problems for practical use. Therefore, logging would appear to
be the best way to access the history of a program.



Chapter 8

Tool designs

Using the techniques and approaches described in the previous chapters, a visual testing
tool can be designed that should be (assuming it can be implemented well) able to meet all
of the criteria specified in section 2.1 well (a rating of ppp). However, implementing such a
tool within the scope of this thesis is quite unrealistic. For this reason, a limited prototype
was implemented instead.

The prototype visual testing tool is intended to be a proof of concept of the central new
aspects of visual testing:

• The ability to interactively test a program without writing extra code to run test cases.

• A graphical data view at a high level of abstraction for both current and past data.

Therefore, tasks that can be satisfactorily performed using existing tools have been
left out of consideration. For example, static analysis of source code can be done using
Source-Navigator and Bandera. For the same reason, fine-tuning aspects such as the user
interface and graphical presentation has been left out of consideration. Also, visualisations
that appear to be clearly less suitable for visual testing than other visualisations have been
left out. Finally, implementing the execution history views is considered a task for later
work.

The designs for the full visual testing tool and the prototype, including some comments
on the reasons for the less obvious design choices, are described in Table 8.1.
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Feature Full visual testing tool Prototype Section
Data view:
View primitives Standard textual representation

(graphical primitive representations
are less practical)

Standard textual representation (easy to
implement, necessary)

4.1.1

View arrays Tables, plots and images (plots and
images are probably useful when
debugging programs with large nu-
meric arrays)

Tables (plots and images are only use-
ful with large numeric arrays and are
widely available)

4.2

View classes and objects Nested boxes, nested arrows Nested boxes, nested arrows 4.3
View execution stack Object-like view (easy to use) Object-like view (easy to implement) 4.5.5
Code view:
View package hierarchy Package tree Package tree 4.4.4
Source code view Text with execution tracing Text with execution tracing 4.4.1,

4.5.1
View the inheritance hierar-
chy

Class diagram Not implemented (in e.g. BlueJ [27]) 4.4.4

View reference graphs Browsable reference graph Not implemented (in e.g. Source-
Navigator [77])

4.4.5

Execution history view:
View call tree Call tree with all operations Not implemented (left for later work, in

e.g. RetroVue [14]
4.5.6

View hybrid diagram View branch of call tree as hybrid
diagram

Not implemented (left for later work) 4.5.9

Dynamic dependence
graphs

Browsable DDGs Not implemented (left for later work,
some unresolved practical issues)

4.5.11

Move back and forward in
the logged execution his-
tory

Movement in steps or searching for
specific events

Movement in steps or searching for the
last modification to a variable (easy to
implement and useful)

7.2

Elision and abstraction:
Specify abstract data type
and graphical representa-
tion for classes

User-defined abstraction based
on data structures recognised by
class/interface using accessors and
modifiers

User-defined abstraction based on data
structures recognised by class/interface
using accessors and modifiers

5.1.4,
5.1.1,
5.1.2,
5.1.6

Automatic data elision Hiding of data in large and library
objects and arrays, string truncation

Hiding of library object data, string
truncation (prototype not intended for
use with large arrays)

5.2.1

Manual data elision Show/hide individual objects and
classes and all instances of a class
or all classes in a package

Show/hide individual objects and
classes and all instances of a class or
all classes in a package (necessary for
larger programs)

5.2.2

Code elision Package tree (with methods),
method list boxes, block collapsing

Package tree (other methods widely
available)

5.3

Execution history elision All techniques in Section 5.4 Not implemented (nothing to use it on) 5.4
Data editing:
Edit primitive data values Textual editing (easiest to use) Textual editing (easy to implement) 6.1.1
Edit object references Dragging and dropping of arrow

ends or object boxes (easiest to use)
Dragging and dropping of arrow ends or
object boxes (easy to implement)

6.1.2

Execution control:
Execute methods (includ-
ing constructors)

Pop-up method menu and invoca-
tion parameter object

Pop-up method menu and invocation
parameter object

6.2.2

Start and stop execution of
threads

Selected in data view Selected in data view 6.3

Step through the execution
of a thread

Step to next line, next instruction,
into called methods, out of the cur-
rent method and over method calls

Step to next line (most commonly used
step, others can be added later)

6.3

Set and remove breakpoints Selection of source code lines Selection of source code lines 6.3
Set and remove watch-
points

Selection using data view Not implemented (easy to add later,
breakpoints can usually be used)

6.3

Table 8.1: Designs for a full visual testing tool and a prototype



Chapter 9

Prototype

In order to evaluate the most important new ideas in visual testing, I have produced a
prototype, which I call MVT (Matrix Visual Tester).

MVT can be divided into the following parts, each of which corresponds to a package
in the MVT package fi.hut.cs.mvt:

• Instrumentation of debuggee (fi.hut.cs.mvt.connection.instrumentation).

• Connection to debuggee (fi.hut.cs.mvt.connection).

• Data model (fi.hut.cs.mvt.data).

• View model (fi.hut.cs.mvt.view).

• User interface (fi.hut.cs.mvt.ui).

Each of these parts will be separately described in this chapter.
As its name suggests, MVT is implemented using Matrix. Matrix provides MVT with a

framework for logging and visualisation of data structures. By using an existing visualiser,
the time to produce the prototype visual testing tool was cut down noticeably. However,
many of the execution history visualisations would have required extensive additions to
Matrix.

The structure of MVT is shown in Figure 9.1.

9.1 Connection to debuggee
MVT uses the hybrid debuggee connection described in Section 7.1.5. Thus, it consists of
instrumentation code and a runtime connection based on JPDA.

9.1.1 Instrumentation
In order to gather information effectively from the debuggee, the Java bytecode of the de-
buggee is instrumented with calls to several empty dummy methods (in the MVT debug call
class fi.hut.cs.mvt.connection.instrumentation.DebugCalls) that take the infor-
mation to be extracted as parameters. Calls to these methods can then be detected as method
entry events using JPDA.

The instrumentation is implemented using the class file parsing and modification facil-
ities of BCEL [17]. Before starting the debuggee, the user must tell the instrumenter which
packages or classes to instrument. The instrumenter then adds the extra method calls to the
debuggee class files.
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Debuggee JVM

Debugger JVM

Instrumentation User program code

JDWP implementation

JDWP

Method entry events

Debug events

Commands

Commands

JDI implementation

Debug events

MVT
Debuggee connection

Debug events

Data model

View model

Matrix

MVT user interface

Data change and execution events

Matrix data structure interfaces

Data

Method calls and data changes

Abstracted data structures

JDI
Commands

Commands

Commands

Instrumentation calls

Figure 9.1: Structure of MVT
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When the instrumenter instruments a class file, it adds instrumentation code before and
after almost every bytecode instruction in the class file. Before each instruction, code is
added to copy the values read from the operand stack by the instruction and call a suitable
method in DebugCalls to send the values to the debugger. Similarly, after the instruction,
if the instruction put any new values on the stack, these values are copied and passed to a
method in DebugCalls.

The instrumenter also adds code to the start of every method to generate a unique iden-
tifier for each method invocation. This is used by the data model to identify stack frames
uniquely.

The instrumentation has a few minor problems that are related to the requirements
placed by the JVM on bytecode. References to newly created objects that have not been
initialised can only be manipulated in a limited number of ways. In particular, passing them
as parameters to any method other than a constructor for the right object type is considered
an error. Due to this, newly created objects will not be visible until the first field value is
written to them by instrumentation code or a reference to the object is stored in an object.
In practice, the only effects of this limitation are that new objects are not visible until the
instrumented code actually does something with them. This may be mildly confusing, but
no relevant information is lost.

Adding the instrumentation calls may cause a method to expand beyond the 64 kB limit
enforced by the JVM. Methods written by human programmers are seldom large enough
to cause problems. However, some problems may be experienced with machine-generated
code. No problems of this type were observed during testing.

9.1.2 Runtime debuggee connection
All communication with the debuggee, including starting the JVM in which the debuggee
is run, is done using JPDA [71]. MVT uses JDI to access JPDA features.

Initially, the debuggee is started using the normal JDI procedure. In order to remove the
need to start a main method immediately, the debuggee VM is started using a dummy class
with a main method that does nothing except run into a breakpoint.

JPDA only allows one debugger-initiated method invocation to be active at a time. If
the debugger invokes a method through JPDA while a method invocation is active, JDI
cryptically reports an unknown JDWP error of type 502 (labelled ALREADY_INVOKING in
the JDWP specification). To circumvent this problem, MVT does not invoke the methods
the user specifies directly. Instead, it uses the thread created for the dummy main method
to start a new thread in which the user-specified method is invoked using the Java reflection
API (java.lang.reflect). This allows the user to invoke methods at any point in the
debuggee’s execution. Accessors are run in separate threads in a similar fashion, which
enables MVT to kill an accessor that has not finished within a suitable time limit.

MVT allows the user to step through running code a line at a time or run it to the end
of a user method invocation or a breakpoint.

The debuggee connection is based on an event queue mechanism similar to that of
JPDA. The debug connection waits for events from JPDA and then processes them. In
processing a JPDA event, the debuggee connection may generate one or more events of its
own, which it put on its own output queue. These events are similar to the events produced
by JPDA, but they are at a slightly higher level and the events produced by instrumentation
calls have been converted into a more sensible form. The data model part of MVT waits for
events from the debuggee connection part, and updates its own data model correspondingly.
Whenever the user wants the debuggee to continue or step, the data model waits for and
processes events until the criterion for interrupting execution is satisfied.

Due to namespace conflicts caused by the classes used by the instrumentation, MVT
cannot be used to debug programs that use the package fi.hut.cs.mvt or any package
inside it. In practice, the only problem this causes is that MVT cannot examine itself unless
the package names are changed in the copy that is examined.
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9.2 Data model
The data model is essentially a log of all changes made to the data structures in the program.
Other aspects of the execution history, such as invoked methods, can also be considered a
part of the data model. Currently, only operations that affect the data in the debuggee are
logged.

Whenever an event is received from the debuggee connection, the corresponding changes
are made to the data model. MVT stores the data model in memory structures provided by
Matrix (matrix.structures.memory). These structures automatically log changes and
allow the user to step back and forth through the history of the data structures using the
animation controls provided by Matrix.

The data model consists of data elements (DataElement), which can be either data
containers (DataContainer) or model variables (ModelVariable). Model variables cor-
respond to individual variables in the debuggee: fields, local variables and array elements.
Data containers correspond to threads (or their stacks), stack frames, objects, classes and
arrays. A model variable always contains a JDI reference to a value in the debuggee. Sim-
ilarly, each data container contains a reference to the corresponding thread, stack frame,
object, class or array in the debuggee. Data containers also contain a number of named ele-
ments. Each element is a model variable. JDI provides references to objects, classes, threads
and arrays. Stack frames are identified using a identifier generated by the instrumentation
code.

The data model is also responsible for detecting possible changes to data values ex-
tracted using accessors and running the extractors to update the values. The data model
keeps track of the extracted values. If an object is known to be mutable and updating ex-
tracted values is desired for the object’s class, extracted values are updated whenever a
method call on the object exits. For most library classes (e.g. Collections), this is suffi-
cient.

9.3 View model
The view model consists of data structures that can be visualised by Matrix (they implement
various FDT interfaces in matrix.structures.FDT) that can update themselves to reflect
the information in the data model. The top level view model object is called the nested
object graph, which implements an extended version of the Matrix graph interface. The
nested object graph contains container arrays that correspond to the data containers in the
data model. The container arrays contain named elements that are data structures that can
be visualised by Matrix. The elements can be e.g. primitive variables, other container arrays
and arrows to other container arrays.

Abstraction and elision are handled by the view model. When the view model is updated
based on the data model, convertors are applied to transform the data into the desired form.

9.4 User interface
The user interface allows the user to access all the features of MVT. Most of the MVT
user interface is provided by Matrix. The MVT main window is an extended version of the
Matrix prototype user interface. It contains a visualisation of the nested object graph based
on the data model, a package tree and a view of the source code of the currently running
code.

Operations that manipulate the code of the debuggee and visualisation settings of classes
and packages are performed using the package tree. To preserve screen space, the branches
of the tree corresponding to packages are collapsed by default. The class visualisation set-
tings are the default settings for the instances of the class; object-specific settings override
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these. If a class does not have a value for a setting, it inherits one as described in Subsec-
tion 5.1.6.

The source code view shows the line at which the debuggee has stopped highlighted in
the source code.

The nested object graph shows the data in the debuggee and allows the user to manipu-
late the debuggee by modifying data through drag and drop or pop-up menus.

The visualisation settings for objects include:

• Transformations for the container array view such as flipping or rotating the array as
well as turning indices and title bars on or off.

• The name of the (possibly virtual) field to show the object as.

• Whether the object is shown even though no reference to it is visible.

The class-specific default object visualisation settings include:

• Defaults for all of the object-specific settings.

• The extractors and convertors for instances of the class. The extractors and con-
vertors are Java classes that implement the fi.hut.cs.mvt.data.Extractor or
fi.hut.cs.mvt.data.Convertor interface. When defining the extractor or con-
vertor to use for a class, String and DataContainer parameters may be specified
to configure the extractor or convertor for use with the class.

The class-specific defaults can be saved between sessions. Object-specific settings can-
not be saved.

Figure 9.2 contains a screen shot of MVT taken during the execution of the hash table
test case (see Section 10.2). From the top down, the MVT/Matrix window in the screen
shot contains:

• Menus that contain global settings and commands.

• The animator controls used to step through the logged execution history.

• The debuggee state view, containing (from left to right):

– The active thread, containing a stack frame, which contains the local variables
for the method invocation. If several method invocations are active in a thread,
they are arranged vertically in a table inside the thread box. If several threads
are active, they are all shown (unless the user changes this using elision con-
trol).

– A LinearHashTable object. Both its fields (the actual table, and its size) are
shown, as well as the result of passing the table to the valueOf method in the
Java String class. As only the keys in the table are interesting in this context,
only the key (an Integer object) is shown for each hash table entry.

– The LinearHashTable class, which contains two static fields.

• The tree of packages and classes in the class path. All packages are collapsed to save
space.

• The search method invocation described in the use case description, before it is exe-
cuted using its pop-up menu.

Figure 9.3 contains a screen shot of MVT taken during the execution of the XML tree
test case (see Section 10.3). The attributes and children of each XML node are shown.
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Figure 9.2: MVT running the hash table test case

Figure 9.3: Part of an XML tree shown in MVT
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Use cases

In order to provide examples of the use of a visual testing tool and some concrete cases to
evaluate the prototype against, I will present a few use cases for a visual testing tool. These
test cases are intended to demonstrate that a visual testing tool can be used as a debugger
to examine a wide range of programs and in addition provide a clearer data view, decrease
the need for test code and provide a better way to examine the execution history of the
program.

The first three test cases (examining a sort routine, a hash table and a library data struc-
ture) are intended to simulate different unit testing scenarios, as this type of use is partic-
ularly conducive to interacting testing. Also, keeping the tests small makes the tests easier
to perform. The small tests concentrate on testing the presentation of the program state,
the prototype’s support for causal understanding and the generality of the prototype when
applied to different data structures. The hash table test is also intended to test the data mod-
ification and execution control aspects of the the prototype. The library data structure test
should demonstrate the prototype’s suitability for one of the most useful applications of a
more abstract data view. The last test case tests the suitability of the prototype for the testing
of larger programs. These four tests should provide an indication of the suitability of the
prototype for software testing without requiring extensive testing that can not be performed
within the scope of this thesis.

10.1 Debugging a sort routine
Debugging a bubble sort routine is a simple test that is within the capabilities of all of the
surveyed software visualisation systems. A bubble sort routine with an off-by-one error in
a loop condition is run on a small unsorted integer array and examined with a software
visualisation tool in order to find the bug. The sort routine is as follows (spotting the error
is left as an exercise for the reader):

public class BubbleSort {
public static void sort(int[] table) {

for(int i=0;i<table.length;i++)
for(int j=i+1;j<table.length-1;j++)

if (table[i]>table[j]) {
int temp=table[i];
table[i]=table[j];
table[j]=temp;

}
}

}
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This use case is usually easy to handle with existing graphical and visual debuggers, as
they can all display integer arrays in a meaningful fashion. In most debuggers and program
visualisers, all that has to be done is to load the program and step through it displaying the
state of the array. In order to do this with algorithm animation and simulation tools, the
code must be modified or extended to conform to the interfaces used by the tools. In Lens
and Leonardo, a visualisation must be constructed.

For simple programs such as this, single stepping is quite adequate. However, being
able to step backwards through states of the program and list the executed operations may
also be useful, as it eliminates the need for stepping through the program repeatedly.

In this case, a visual testing tool can be used much like a logging debugger such as
RetroVue.

Sequence

• Run the broken sort routine on the array {4,7,3,2,5,1}, stepping through execution
and viewing the array and loop indices.

• Step backwards through the execution of the program, if possible. The array and
indices should be visible.

10.2 Testing a hash table
This use case demonstrates the ability of a software visualisation tool to display structures
consisting of objects linked with references at a suitable level of abstraction. It also provides
an example of a problem that is easily detected using visual testing that is hard to find using
normal unit testing methods.

A hash function unsuited to the data (the key modulo 10) causes hash tables that use
linear probing to become unevenly loaded and therefore inefficient. A small table is con-
structed and visualised in order to find this inefficiency. The linear probing hash table im-
plementation at [74] is used for this test.

When using a software visualiser with no execution control or simulation capabilities,
test code must be written that creates a table and performs various operations on it. The test
code must be carefully planned to cover all different cases or edited, recompiled and rerun
repeatedly in order to provide a semblance of interactivity.

When using a debugger, the test code approach can be used. However, if the debugger
supports method invocation, interactive testing can be performed by starting the program
in the debugger and then invoking the hash table implementation’s methods to construct a
table and manipulate it. In all of the surveyed debuggers, this approach had some problems.
BlueJ is the only debugger examined here that allows graphical method invocation; working
with object references in the others is somewhat inconvenient. DDD and GVD can display
the resulting structure as reasonably sensible tree of objects. With BlueJ and RetroVue, the
user has to do some digging in the object viewer to extract the keys.

The program visualisers with programmable views and the algorithm simulation and
animation tools again require additional work to produce a visualisation. However, this
visualisation should be clearer than that produced by a debugger. An algorithm simulation
tool also provides easy interactive testing.

In this case, a visual testing tool can provide the convenient interactivity and clear
visualisation of an algorithm simulation tool without the extra adaptation work.

Sequence

• Insert the keys {20,0,101,21,53,10} into the hash table.

• Step through (line by line) searching for the key 10 in the hash table.
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• Delete 10 and 0.

• Step through inserting the key 10 into the hash table.

When stepping through a search, the table entry that is being examined should be indi-
cated.

10.3 Examining a data structure through a library API
This use case is intended to demonstrate how complex library data structures written to
conform to a published API can be visualised effectively.

As an example, an XML document will be loaded, parsed and accessed using the
DOM API (as described in [57]) and visualised using the visual testing tool. When us-
ing a debugger, the nodes in the DOM tree are shown in a very implementation-specific
fashion that is very hard to work with. The children of a node can be requested using the
getChildNodes() method, which returns a NodeList that can be read using its item(int
index) method. The data can sometimes be read directly from objects referenced from the
node object, but this is implementation-specific and the fields may be empty if the parser
defers parsing until an attribute is requested (like e.g. Apache Xerces 2.3 appears to do).

Visual debuggers and visualisers that rely on visualising the data fields of an object are
obviously at a disadvantage in this case, as they will show the implementation of the tree
nodes instead of the tree data and structure.

The programmable program visualisers and algorithm animation and simulation tools
again require some extra code to produce the visualisation, but they can produce a very
clear view of the data.

With a visual testing tool, convertors can be combined to call the API methods and
convert the values returned by them into a meaningful visualisation. If the API is very non-
intuitive, some additional convertor code may be necessary. However, the amount of code
needed should be less than the amount required to use an algorithm simulation tool.

Sequence

• Load the Matrix default configuration file (1896 lines of XML at the time of writing)
using the DOM API.

• View the tree.

10.4 Studying the behaviour of a large program
This use case is intended to evaluate the suitability of the visual testing tool for work with
large programs. As an example, I will use jEdit [69], a Java-based text editor freely avail-
able in source form. jEdit is a quite a large program (roughly 75000 lines of code). It is
therefore reasonable to assume that any tool that can be successfully used to examine jEdit
can also be used to examine other large programs.

Studying the static aspects of a program is seldom the most effective way to gain an
understanding of how the program works. Running the program and trying out different
features is often more educational even without a view into the internals of the program.

While manipulating a program using its normal user interface can give a good picture
of the feature set of the program, it is harder to gain an understanding of how the program
works this way. For this, some sort of view of the program execution and data is very useful.
Being able to execute methods and modify data at will may help, but it is not necessary.
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Sequence

• Start jEdit.

• By examining history and/or placing breakpoints, determine how jEdit determines
which files are loaded on startup (where this setting is stored and how).



Chapter 11

Evaluation of prototype

The prototype will be evaluated in two ways. First, a feature set comparison will be used to
compare it to the other surveyed tools. Second, the prototype will be tested against the use
cases in Chapter 10.

11.1 Feature set comparison
When evaluating using the system defined in Table 3.1, MVT gets the results shown in
Table 11.1. These results can be compared with the scores in Table 3.2. MVT was written
with these criteria in mind, so it is hardly surprising that it scores at least pp in every category.

11.2 Evaluation using use cases
Evaluating MVT based on its feature set, as in Table 11.1, may not tell the whole story. In
order to evaluate the performance of MVT, I have tested MVT in the use cases defined in
Chapter 10. The performance of MVT in these use cases should give some indication of
whether MVT is suitable for debugging.

To put MVT’s results in perspective, the same tests will also be performed using DDD
and Matrix. These two were chosen from the surveyed tools as they are freely available,
can visualise Java programs, have high scores in Table 3.2 compared to similar tools and
have at least limited support for everything required by visual testing.

Like most algorithm animation/simulation tools, Matrix cannot extract information
about the execution flow of a program (e.g. stack frames and execution position) unless the
program explicitly maintains data structures corresponding to this information and updates
it or an extension to Matrix is written that connects to the program using instrumentation
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Table 11.1: Feature set evaluation of MVT
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Score Meaning
- The visualisation is completely useless or no visualisation was pro-

duced.
p Some information is missing from the visualisation or it is hard to un-

derstand.
pp The visualisation is clear but has some problems.
ppp The visualisation is clear and has no noticeable problems.

Table 11.2: Scoring system for evaluation of clarity of visualisations in test runs

and/or JPDA (like MVT does). For this reason, Matrix will be left out from tests where the
amount of extra or modified code required to use Matrix would probably exceed 500 lines.

For each use case, the effort needed to prepare the desired visualisation will be mea-
sured using:

• The total time used by me when performing the test. This time includes the time
needed to write any test code that is required. To avoid biasing the measurements
against the first tools to be evaluated, no test code was reused between test cases, and
the data structures to be visualised were studied before the first test started.

• The amount of lines of code (LOC) written or modified.

A large amount of lines of code should correspond to a low generality rating (the pro-
gram must be modified or interface code written). If a lot of time is needed, the tool may
be lacking in generality and/or automatic view control.

Similarly, for each test the clarity of the resulting visualisation will be evaluated accord-
ing to the scale in Table 11.2. This depends on representation, abstraction and/or manual
view control, and should directly affect how well the programmer can understand the visu-
alisation. However, this evaluation may be somewhat subjective.

11.2.1 Debugging a sort routine
In addition to the general evaluation criteria, stepping backwards through the execution
history is tested. This can be considered a test of the tool’s support for causal understanding.

DDD

In order to perform this test with DDD, I had to write a simple main method that creates the
table to sort and calls the sort routine. I also had to add all of the array elements individually
to the visualisation due to technical problems with JDB (oldjdb in Sun Java 1.2.2 and 1.3.1
on i386 Linux). The resulting view was quite acceptable. I used DDD’s “undo” feature to
step back through the execution history.

Matrix

In order to perform this test with Matrix, I had to rewrite the bubble sort routine to im-
plement the Matrix Array interface and store data in a Matrix VirtualArray. Most of
the time was spent writing this code. Running and visualising the bubble sort was then a
straightforward matter of putting the class files in the Matrix directory, opening them in
Matrix, executing the sort routine and stepping through the resulting animation.

MVT

Running this test with MVT consisted of running the instrumenter on the bubble sort rou-
tine, loading MVT, creating the array, loading the bubble sort class, executing the bubble
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System Time LOC Clarity Reverse stepping
DDD 10 min 6 pp Yes
Matrix 40 min 64 ppp Yes
MVT 3 min 0 ppp Yes

Table 11.3: Test results in bubble sort test

System Time LOC Clarity
DDD 24 min 15 pp

Matrix 74 min 94 ppp

MVT 16 min 0 ppp

Table 11.4: Test results in hash table test

sort on the newly created array, and finally stepping through the result. No additional code
was needed.

Summary

Table 11.3 contains the test results for the bubble sort use case. Using DDD and MVT
was quick and satisfactory, while using Matrix required a disproportionate amount of extra
code.

11.2.2 Testing a hash table
DDD

In order to perform this test with DDD, I had to write a simple main method that creates
the table and calls the insert, delete and search routines. I also had to add the array elements
individually to the visualisation due to technical problems with JDB and in order to get the
desired view. The resulting view was acceptable.

Matrix

In order to perform this test with Matrix, I had to extend the hash table to implement the
Matrix Array interface and modify it to store data in a Matrix VirtualArray. Most of
the time was spent writing this code. Running and visualising the hash table was then
a straightforward matter of putting the class files in the Matrix directory, opening them
in Matrix, activating the test code to modify the table and stepping through the resulting
animation.

MVT

Running this test with MVT was similar to the bubble sort test; instrumentation followed
by loading the class into MVT and interactively testing in MVT. No additional code was
needed.

Summary

Table 11.4 contains the test results for the hash table use case. Using MVT was reasonably
painless, DDD required a bit more work but not too much, while Matrix required quite a
lot of extra test code.
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System Time LOC Clarity
DDD 56 min 55 p

Matrix 49 min 78 p

MVT 84 min 32 -

Table 11.5: Test results in Matrix configuration file tree test

11.2.3 Examining a data structure through a library API
In this test, an XML tree accessed should be loaded using the DOM API and visualised as
a tree. Each node in the DOM tree should be shown as a box containing the attribute type
name, the attributes of the node (name and value of each attribute) and links to the child
nodes. The order of the child nodes should be clearly visible.

As the purpose of this test is to examine how well MVT can be adapted to a new library
API, the time used to write the extractors for XML data is included in the test.

DDD

In order to perform this test with DDD, I had to write a small program that loads the XML
file, parses it using the DOM API and constructs a tree of simple objects containing the
relevant data.

DDD failed to visualise even the converted tree properly. Apparently, DDD or oldjdb
has problems with empty arrays and arrays with more than three elements. This caused
most of the nodes of the tree to be scrambled and lack some information. This test strongly
suggests that DDD is not suitable for production use.

Matrix

The XML test code for Matrix was similar to the code used with DDD, except that the
parsed tree was made available to Matrix using the Matrix Tree interface.

The resulting tree representation should have been quite clear, but rendering problems
(including a large black box that covered the entire tree and the right-hand side of the tree
being cut off) made the tree hard to examine effectively.

MVT

Defining the DOM tree visualisation in MVT took roughly 40 minutes. This time mostly
consisted of defining the abstractions for the DOM NodeList and NamedNodeMap classes
(Attr objects could be directly visualised using extractors built into MVT). However, ap-
plying the DOM tree visualisation to the Matrix configuration file caused MVT to spend
over half an hour extracting the tree before the JDWP implementation in the debuggee
crashed. In other words, MVT produced no useful output. This indicates that MVT has se-
vere performance and stability issues that make it unsuitable for use with large data struc-
tures.

Both the performance problems and the crash seem to be caused by Sun’s JPDA imple-
mentation. The time between requesting a method invocation and the actual execution of
the method invocation seems to increase with every invocation. JDWP reported an internal
error before failing, which means that JDWP has a bug or insufficient error checking.

Summary

Table 11.5 contains the test results for the XML tree test. DDD and Matrix both required
some test code and had problems producing a graph, even though a partial result was pro-
duced. MVT needed less test code, but failed to produce a graph due to implementation
problems.
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System Time Clarity
DDD 1 min p

Matrix 3 min pp

MVT 5 min pp

Table 11.6: Test results in MVT build file tree test

As all of the debuggers experienced technical problems, I repeated the test with a
smaller XML file (a pre-release version of the build configuration file for MVT, 94 lines)
in order to determine whether the problems were related to the size of the file. Table 11.6
contains the results of this additional test. The time noted here is the time needed to apply
the pre-defined visualisation to the new file. In this test, Matrix and MVT had no rendering
problems and produced a usable result.

11.2.4 Studying the behaviour of a large program
This test is mostly about finding things in the execution history. If the tool used provides
good support for causal understanding in practice, it is easy to find the right spot in the
program. For these purposes, ease is considered equivalent to speed.

Using Matrix to examine the execution of a program of this type is quite unpractical, as
it would require adding code to trace execution either involves instrumenting jEdit manu-
ally with code that keeps track of the execution position (which involves editing thousands
of lines), writing an instrumenter that inserts the tracking code or adding a debugger con-
nection to Matrix. The first option is extremely tedious, while the second and third duplicate
parts of MVT.

DDD

Using DDD, I stepped through the code executed in the main jEdit class until I found the
code that loaded the list of previously opened files and opened the listed files. This was
quicker and easier than expected.

MVT

Even with only minimal extraction of data (String contents only) and instrumentation of
only the main class (org.gjt.sp.jedit.jEdit), MVT used almost a GB of RAM even
before jEdit had started completely. Apparently, the main class of jEdit performs enough
operations on its own to create a huge log. Also, each attempt to run jEdit under MVT
lasted for roughly ten minutes.

The problems in this test suggest that MVT collects too much data or stores it ineffi-
ciently and slows down the execution of a program badly. Thus, MVT is not suitable for
testing large programs at once. When using MVT, the user must decide on a (small) part of
a program and instrument and examine only that part.

Summary

MVT’s extensive logging makes it unsuitable for use with large programs. DDD, on the
other hand, actually seems to handle this type of use case well. The test results are in
Table 11.7.

11.2.5 Evaluation
When examining a program with MVT, the user need only write extra code if he wants
to define a new type of abstraction. In this respect, MVT provides a clear advantage over
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System Time
DDD 14 min
MVT 75 min (failed)

Table 11.7: Test results in jEdit examination test

Matrix, as the user does not need to explicitly define every type of object to be visualised.
When using DDD, the abstraction must be added to the debuggee. When using Matrix, a
class must be implemented that provides all of the visualisation.

11.3 Summary
While MVT has a feature set that is well suited for visual testing, it does not always work
well in practice. In particular, MVT works very badly with programs that perform lots of
operations or create large data structures. However, getting a good visualisation at a slightly
higher abstraction level than the implemntation level seems to be easier with MVT than
with DDD or Matrix. This means that visual testing, even in this crude implementation,
appears to simplify the testing of small chunks of code. In other words, MVT seems to
be quite a decent tool for unit testing. MVT can also be used to generate visualisations of
small programs quickly.

MVT has several performance-related problems that must be resolved in order to pro-
duce a good visual testing tool. In particular, more efficient ways to extract information
from a debuggee and store the execution history are clearly needed.



Chapter 12

Conclusion

The goal of visual testing (outlined in Chapter 2) is to make it easier for programmers to
test and debug their code. Visual testing does this by combining ideas from different types
of software visualisation into a single tool that should make it easier for a programmer
to try out different operations on program code and examine the results visually. I have
evaluated several software visualisation tools in Chapter 3. All of these systems provide
some features that could be useful in visual testing, but none of them is an effective visual
testing tool.

Together, the surveyed software visualisation tools have almost everything that is needed
for a visual testing tool. For this reason, I have examined and evaluated relevant visuali-
sation (Chapter 4), elision and abstraction (Chapter 5) and debuggee control (Chapter 6)
techniques. Most of these techniques can be found in the surveyed tools.

Using these evaluations, I have found ways to present the state and execution history
of a program effectively. Most of the state of a program can be shown in a data view
that primarily consists of objects (shown as boxes with data fields) that may contain or
refer (through arrows originating in a data field) to each other. By augmenting the object
display with boxes for classes and threads and adding a simple display of source code
with highlighting of the current statement, the data view can display most of the state of
the program. For clarity, data should be shown at a level of abstraction close to the level
used by the programmer when writing his code. Making use of the abstraction inherent in
object-oriented code seems to be an effective way to provide data abstraction in a debugger.
Many ways to show the execution history of a program exist, but the best ways seem to
be allowing the user to step through the states of his program and showing the executed
operations as a tree or in the data view as a hybrid diagram.

In order to efficiently test software, the user should be allowed to specify, with a mini-
mum of fuss, the operations he wants the software to perform. Allowing the user to graph-
ically manipulate the data in his program and invoke methods at will provides additional
flexibility and eliminates much of the need for test code.

Most of the aforementioned techniques have been used earlier, but they have not been
combined. A visual testing tool consists almost entirely of software visualisation and de-
bugging techniques that have been developed earlier and some additional ideas to make
these different techniques work together.

After examining different approaches to the implementation of a visual testing tool
in Chapter 7, I have presented (in Chapter 8) designs for a full visual testing tool and a
prototype visual testing tool that demonstrates the feasibility of the visual testing concept
and the new techniques applied in it.

Even though my tests (Chapter 11) show that the prototype visual testing tool has severe
performance issues, my tests suggest that it is a useful tool for unit testing. As unit testing
is one of the intended uses for a visual testing tool, this means that the prototype already
goes some way towards the goals of visual testing.
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MVT was put together in two man-months and contains only crude implementations of
a few of the ideas of visual testing. Despite this, my tests suggest that it is an improvement
over existing tools in tasks such as unit testing and debugging. This suggests that a well
implemented complete visual testing tool can prove to be a powerful tool.

12.1 Future research
There are several matters that need to researched in more depth before a proper visual
testing tool can be produced:

• The execution history logs produced by MVT are far too large. Ways must be found
to rid these logs of irrelevant and redundant information and store the remaining
information efficiently.

• Some issues remain unsolved in adapting dependence graphs for use in visualisation.

• A more efficient way to extract information from a running program and control it is
needed. In the long term, the best solution is probably to adapt a virtual machine to
visual testing.

• The user interface of the visual testing tool needs to be planned more carefully than
MVT was. In particular, common operations should be made easier to perform.

• The possibility of adding some sort of automatic checking of the validity of the pro-
gram (such as assertions) combined with some sort of visible warnings in the visual
testing tool should be investigated.

• The possibilities of adapting visual testing to languages other than Java should be
investigated.

If the above matters are researched, it may be possible to produce a visual testing tool
that is truly a useful aid in debugging and testing real-world software.
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