Kary FRÄMLING
ARCADA – Teknik
Chap 3, Page 2

3 Threads

Threads are independent processes inside of a program, which execute in parallel. One example of a multi-threaded program is the sorting demo applet included with the JDK at “jdk1.1.x/demo/SortDemo/example1.html”.

Example 1 shows two simple threads which run in parallel. One thread writes out “ping” every 1/30 second and the other one writes out “PONG” every 1/10 second.

Example 1. Using threads (compiled and run).

public class PingPong extends Thread

{

 String word; // Word to display.

 int delay; // Pause length.

 public static void main(String[] args)

 {

 new PingPong("ping", 33).start(); // 1/30 seconds.

 new PingPong("PONG", 100).start(); // 1/10 seconds.

 }

 PingPong(String whatToSay, int delayTime)

 {

 word = whatToSay;

 delay = delayTime;

 }

 public void run()

 {

 try {

 for (; ;) {

 System.out.print(word + " ");

 sleep(delay); // Wait until next time.

 }

 }

 catch (InterruptedException e) {

 return; // Finish this thread.

 }

 }

}

Program run:

PONG ping ping ping PONG ping ping ping PONG ping ping ping PONG

ping ping ping PONG ping ping ping PONG ping ping ping PONG ping

ping ping PONG ping ping ping PONG ping ping ping PONG ping ping

ping PONG ping ping ping PONG ping ping ping

A threaded class may be implemented by extending the “Thread” class or by implementing the “Runnable” interface. In both cases, the method “run()” should be overridden.

Implementing “Runnable” is preferable if your class needs to extend some other class than “Thread”.

In Example 1, the program and the threads have to be stopped by pressing Ctrl-C. This is not very elegant.

A thread should be stopped by having a stopping condition in the eternal loop of the “run” method. It is common that the class has an instance variable that is set to true when the thread should stop. This way the thread stops next time it is activated.

Having a multi-threaded program requires some special precautions. The first one is to synchronise access to an object. For instance, if one thread is halfway modifying the object when another thread wants to access it, the object and the two threads may end up in an inconsistent state. This is quite similar to locking a document on a computer network while it is being modified, so that only one user can modify it at the same time.

It is possible to lock the object during the execution of a method by including the keyword “synchronized” in the method declaration. This means that no other thread is allowed to modify the contents of the object while the method is executing.

One way of treating such situations is by using the methods “wait()” and “notify()” that belong to “Object”, so they are accessible for any object. “wait” is used for waiting until the state of the object has been changed. When it happens, “notify” is called, which makes the waiting threads continue. This is useful for queue objects, for instance, where there is a queue feeding thread and a queue reading thread. If the reading thread tries to get some input when the queue is empty, then it is put to wait. Once input gets available again, the thread is notified and may continue execution.

When there are several threads running that need some common resource, there is always a risk for deadlock, meaning that two or more threads block each other’s access to the resource.

Several programming errors may be the reason for deadlocks. One reason might be that the thread monopolises the processor or some system resource. This is why well-behaved threads should call the methods “sleep()” or “yield()” with regular intervals. “sleep” puts the thread to sleep for a given time, while “yield” just gives a possibility for other threads to run.

All threads belong to a thread group. Thread groups offer a way of controlling several threads simultaneously.

It might be interesting to know that all Java programs which read and display images from disk are multi-threaded. Every time an image should be displayed, it starts up a new thread for reading it and feeding it to the thread that wants to display it.

