Introduction to Java programming
K.Främling 16.11.99
Chap 9, Page 5

9 abstract classes and Interfaces

An abstract class is a class which only implements a part of the functions that it is intended for. One example of an abstract class could be a class for sorting objects (class "Sorter" for instance), which provides the sorting logic itself. Then a class "IntSorter" would only need to provide one method for comparing two integers and another method for swapping those that are out of order.

The following class definition compiles alright:

abstract class AbstractSort

{

 abstract int compare(Object o1, Object o2);

 abstract void swap(Object o1, Object o2);

 void sort(Object[] list)

 {

 int i = 0, j = 0;

 // Some sort logic here, then call to compare and swap

 // methods.

 if (compare(list[i], list[j]) < 0)

 swap(list[i], list[j]);

 }

}

The sort logic is not written here, but that is not the main issue. The main issue is that we have a partial implementation (the sort logic) while some parts of the implementation have to be provided by derived classes. So the class "IntSorter" would have to provide an implementation for the methods that are declared abstract.

The following example shows an implementation of a benchmarking program, where the benchmarking logic itself is defined in the abstract class "Benchmark". The method that performs the calculation used for benchmarking is then defined in the derived class "MethodBenchmark". Now implementing other benchmark tests simply requires creating a new derived class that implements the "benchmark()" method.

Example 1. Abstract class for benchmarking (compiled and run).

abstract class Benchmark

{

 abstract void benchmark();

 public long repeat(int count)

 {

 long start = System.currentTimeMillis();

 for (int i = 0 ; i < count ; i++)

 benchmark();

 return (System.currentTimeMillis() - start);

 }

}

public class MethodBenchmark extends Benchmark

{

 void benchmark() {} // Does not do much...

 public static void main(String[] argv)

 {

 int count = Integer.parseInt(argv[0]);

 long time = new MethodBenchmark().repeat(count);

 System.out.println(count + " methods in " +

 time + " milliseconds");

 }

}

Program output:

C:\>java MethodBenchmark 1000

1000 methods in 60 milliseconds

An interface is a class definition that only contains abstract methods (no method implementations at all). So it is not possible to create objects of interface classes, just like it is not possible to create objects of abstract classes neither.

Example 2. Interfaces (compiled and run).

import java.awt.*;

import java.awt.event.*;

interface AnimatedObject

{

 void move();

 void drawIt(Graphics g);

 void clearOld(Graphics g);

}

abstract class AnimatedPoint extends Point implements AnimatedObject

{

 protected Point oldPos = null;

 AnimatedPoint() { x = y = 10; }

 public abstract void move();

 public void drawIt(Graphics g) { g.fillOval(x, y, 3, 3); }

 public void clearOld(Graphics g)

 {

 if (oldPos != null)

 g.clearRect(oldPos.x, oldPos.y, 3, 3);

 }

}

class XMovingPoint extends AnimatedPoint

{

 public void move()

 {

 if (oldPos == null)

 oldPos = new Point(x, y);

 else

 oldPos.setLocation(x, y);

 x++;

 }

}

class YMovingPoint extends AnimatedPoint

{

 public void move()

 {

 if (oldPos == null)

 oldPos = new Point(x, y);

 else

 oldPos.setLocation(x, y);

 y++;

 }

}

/**

 * This class implements the "WindowListener" interface, which

 * was included in Java 1.1.*.

 * We only react to "WindowClosing" events for exiting the program.

 */

public class AnimationInterface extends Canvas implements WindowListener

{

 AnimatedObject[] points = new AnimatedObject[2];

 public static void main(String[] argv)

 {

 Frame f = new Frame();

 Panel p = new Panel();

 f.setLayout(new GridLayout());

 f.add(p);

 p.setLayout(new GridLayout());

 AnimationInterface c = new AnimationInterface();

 c.resize(300, 200);

 p.add(c);

 f.addWindowListener(c);

 f.pack();

 f.show();

 }

 AnimationInterface()

 {

 points[0] = new XMovingPoint();

 points[1] = new YMovingPoint();

 }

 public void paint(Graphics g)

 {

 // Make the points move 50 steps.

 for (int i = 0 ; i < 50 ; i++) {

 points[0].drawIt(g); points[1].drawIt(g);

 try { Thread.sleep(50); } catch (Exception e) {}

 points[0].move(); points[1].move();

 points[0].clearOld(g); points[1].clearOld(g);

 }

 points[0].drawIt(g); points[1].drawIt(g);

 }

 public void windowOpened(WindowEvent e) {}

 public void windowClosing(WindowEvent e) { System.exit(0); }

 public void windowClosed(WindowEvent e) {}

 public void windowIconified(WindowEvent e) {}

 public void windowDeiconified(WindowEvent e) {}

 public void windowActivated(WindowEvent e) {}

 public void windowDeactivated(WindowEvent e) {}

}

This example first declares the interface "AnimatedObject", which declares that all classes that implement it should implement at least the methods "move", "drawIt" and "clearOld".

Then the class "AnimatedPoint" implements most of this interface, except for the method "move", which is the reason why it has to be declared abstract.

Finally, the classes derived from "AnimatedPoint" implement the "move" method, so it is possible to create objects of these classes.

Interfaces are Java's way of doing multiple inheritance. In fact, "AnimatedPoint" both extends the "Point" class and implements the "AnimatedObject" interface.

A class can extend only one base class, but it can implement any number of interfaces.

As shown by this example, it is possible to declare variables whose type is an interface class. This is why it is possible to declare "AnimatedObject[] points". However, this means that we can only use methods defined in the "AnimatedObject" interface for these objects.
For closing the application window, we use a feature of the Java 1.1.x event model. This is implementing the "WindowListener" interface, which makes it possible for any class to receive window-related events, including window closing events. With the Java 1.0.x event model, we would have had to create a derived class from "Frame", which would override the "handleEvent" method.

