Introduction to Java programming
K.Främling 15.11.99
Chap. 8, Page 1

8 File reading and writing

File reading and writing is done in quite a different way from how it is done in “C”, for instance. It is, however, based on the notion of streams, just like C++. The implementation is still quite different from that of C++.

The principle is that we first have very low-level and simple classes for opening, reading and writing files. Using these classes directly is hardly ever practical nor efficient.

In order to read/write input streams more efficiently, we chain them together. This is how we achieve buffered file reading, for instance.

Before looking at the actual file reading/writing classes, we will have a look at the standard facilities of Java for letting the user specify what file to create/open/write.

8.1 File dialogs for opening and saving files

The AWT library contains standard dialogs for letting the user browse the hard disks for files to open or save. They are implemented by the class “FileDialog”, which is derived from the standard class “Dialog”.

Example 1. Using the standard “Open” dialog (compiled and run).

import java.awt.*;

import java.io.*;

public class FileOpenDlg

{

 public static void main(String[] argv)

 {

 FileDialog fd = new FileDialog(new Frame(),

 "Open file...", FileDialog.LOAD);

 fd.show();

 if (fd.getFile() != null)

 System.out.println(fd.getDirectory() + fd.getFile());

 else

 System.out.println("Open cancelled!");

 }

}

The methods “getDirectory()” and “getFile()” are defined for the “FileDialog” class. They return the directory path (with and ending ‘/’ character) and the name of the file.

If the user cancels the dialog, then “getFile()” returns “null”.

Example 2. Using the standard “Save as” dialog (compiled and run).

import java.awt.*;

import java.io.*;

public class FileSaveDlg

{

 public static void main(String[] argv)

 {

 FileDialog fd = new FileDialog(new Frame(),

 "Save as...", FileDialog.SAVE);

 fd.show();

 if (fd.getFile() != null)

 System.out.println(fd.getDirectory() + fd.getFile());

 else

 System.out.println("Save cancelled!");

 }

}

The standard “Save as” dialog has the interesting feature of asking the user if he wants to replace an existing file. This means that the programmer does not have to test for existing files.

8.2 Reading and writing text files

It would be possible to read and write text files in many different ways with the standard class libraries of the “io” package. This class library has actually changed and evolved a lot since the first version of it.

Error! Not a valid bookmark self-reference. shows one of the easiest and most efficient ways of reading and writing text files, especially when it should be done line by line.

One limitation of this example is that it requires Java 1.1.x in order to work, since the “Reader” and “Writer” classes did not exist in Java 1.0.x.

Example 3. Copying a text file into another (compiled and run).

import java.io.*;

public class TextFileCopy

{

 public static void main(String[] argv)

 {

 String line;

 if (argv.length != 2) {

 System.out.println("Syntax: java TextFileCopy <file1> <file2>");

 System.exit(1);

 }

 try {

 BufferedReader in = new BufferedReader(new FileReader(argv[0]));

 PrintWriter out

 = new PrintWriter(new FileWriter(argv[1]));

 while ((line = in.readLine()) != null) {

 out.println(line);

 }

 in.close();

 out.close();

 } catch (IOException e) {

 // An error happened, just print out the exception. */

 System.out.println(e);

 }

 }

}

The program first checks that we have both the name of the file to read and the file to write and exits if both are not present.

Then it creates a buffered reader for the given input file and a suitable writer (the “PrintWriter” class) for the given output file. After this the while loop does the actual copy.

When using buffered input/output it is often important to call the “close()” method for them. Otherwise the buffer may not be flushed correctly at the end.

The try-catch mechanism is very useful here. With one single try-catch block we treat the case of non-existing input file, error creating output file and all potential read/write errors.

8.3 Reading a file using a URL

It is possible for an applet to open an “InputStream” object on any file that is located in its’ own code base directory or a subdirectory of it. Example 4 illustrates a simple way of doing this.

Example 4. Reading a file inside an applet (compiled and run).

import java.awt.*;

import java.io.*;

import java.net.*;

import java.applet.Applet;

public class URLread extends Applet

{

private String
fileName;

private TextArea
fileDisplay;

public URLread()

{

setLayout(new GridLayout());

fileDisplay = new TextArea();

add(fileDisplay);

}

public void init()

{

// Get the neme of the file to show.

fileName = getParameter("FileName");

}

public void start()

{

String
line;

if (fileName != null) {

// Get an input stream and put in everything into TextArea.

try {

URL fileURL = new URL(getCodeBase(), fileName);

DataInputStream dinp = new

DataInputStream(fileURL.openStream());

while ((line = dinp.readLine()) != null) {

fileDisplay.appendText(line + '\n');

}

dinp.close();

}

catch (Exception e) { System.out.println(e); }

}

}

}

This example reads a file whose name is given as a parameter to the applet from the HTML page that invokes it. Then it shows the contents of the file inside of the text area.

When running this example it is essential that the browser being used is already started up. Otherwise it does not establish the connection to the file. This seems to be a bug at least in certain versions of Netscape Navigator.

8.4 Other input/output classes

As shown by the examples on file input/output, it is possible to "pile" stream objects after each other in order to achieve supplementary behaviour. For instance, the most basic input behaviour is provided by the "InputStream" class. If we then pile a "BufferedInputStream" on it, we get more efficient reading. If we still pile a "DataInputStream" on it, we get access to methods like "readLine()", "readFloat()" etc.

All these classes are derived classes from "InputStream" and belong to the first generation of data input classes.

There is a new generation of classes for reading character input. These classes are derived from the "Reader" class. It is recommended to use these classes for all character input whenever it is possible, since they treat Unicode characters correctly.

The same structure applies to output classes. Most output classes are derived from the class "OutputStream". For correct character output, it is recommended to use classes that are derived from the more recent class "Writer".

Random access input/output is provided by the class "RandomAccessFile". It has methods both for formatted input and output, including the method "readLine()".

Classes derived from "InflaterInputStream" and "DeflaterOutputStream" provide support for reading and writing ZIP and GZIP format compressed files.

8.5 The “File” class

Functions for testing the existence of a file, for retrieving the list of files in a directory, deleting and renaming files and performing other file system related operations are provided by the standard class "File".

The "File" class also has public variables, which contain the system-dependent constants for separating directories in a file path (File.separator) and for separating several paths (File.pathSeparator).

Example 5. Using the "File" class for testing the existence of a file (compiled and run).

import java.io.File;

public class FileExample

{

 public static void main(String[] argv)

 {

 File f = new File("FileExample.java");

 if (f.exists())

 System.out.println("File " + f.getName() + " exists.");

 else

 System.out.println("File " + f.getName() + " does not exist.");

 }

}

File objects may be used when creating input/output streams as well as using the direct file names.

