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ABSTRACT 

Purpose of this paper 

The paper presents an information architecture for managing product information during 

the whole lifecycle about "dumb" products as well as products that have their own 

processing capabilities. Real-life implementations presented show the technical feasibility 

of the architecture and attempt to illustrate the potential commercial impact.  

Design/methodology/approach 

As defined in Weiser (1993): “standard experimental computer science”, meaning 

construction of working prototypes in sufficient quantity and showing that it works.  

Findings 

Presentation of two real-world implementations for Product Lifecycle Information 

Management, generalisation of these to other kinds of products (appliances, machines, 

shipments etc.). 

Practical implications (if applicable) 

Disseminate the existence of an information architecture with ongoing standardization 

efforts that could address increasingly urgent issues of product lifecycle information 

management. 

What is original/value of paper 

No alternative information architecture for the same purpose is known yet. Comparisons 

are made with e.g. the EPC Global architecture in order to explain why they are not 

sufficient. The implementations described illustrate how consumers, maintenance 

providers and manufacturers can be integrated with the architecture in a scalable way. 

Keywords:  Intelligent Products, Internet of Things, Ubiquitous Computing, 

Middleware, Product Lifecycle Information Management 



 

1. INTRODUCTION 

At least in the industrialized parts of our planet, most people have grown up with some 

vision of intelligent robots, buildings etc. in films such as Star Wars and Star Trek, as 

well as in a multitude of Science Fiction books. Despite the enthusiasm for such an 

imaginary world, our current world is still relatively far from that vision. The scientific 

domain called Ubiquitous Computing (alternatively, Pervasive Computing, Ambient 

Intelligence etc.) may be the one that most clearly envisages developing such 

environments. A new candidate concept, the Internet of Things, could expand the rather 

local view of Ubiquitous Computing in a way that would integrate backend systems of 

companies and other organizations with the more embedded processing model of 

Ubiquitous Computing. The resulting communication infrastructure could enable any 

computing device to communicate with any other computing device (not to forget the 

human users), no matter what is their physical size or computational capacity. In this 

paper, we present an information architecture that enables this vision. The information 

architecture has been validated by industrial pilots performed at Helsinki University of 

Technology (TKK) in different application areas. In this paper, we focus on two 

implementations related to Product Lifecycle Information Management (PLIM) (Harrison 

et al., 2004; Främling et al., 2007b).  

In order to make such an information architecture commercially interesting, it also needs 

to handle security and copyright issues. These aspects are not covered in this paper but 

are covered in a security white paper of the PROMISE project (PROMISE, 2004) and 

will be the subject of a separate research paper under preparation. However, as the 

proposed information architecture is based mainly on existing Internet technology and 

protocols, the existing Internet security models are also applicable here.  

The research methodology used in this paper is called “standard experimental computer 

science” (Weiser, 1993), who defines it as follows in the context of ubiquitous 

computing: 

The research method for ubiquitous computing is standard experimental computer 

science: the construction of working prototypes of the necessary infrastructure in 

sufficient quantity to debug the viability of the systems in everyday use; ourselves and a 

few colleagues serving as guinea pigs. 

There was originally 11 real-world demonstrators from different domains defined in 

PROMISE (vehicles, household equipment, telecom equipment etc.). Ten of these 

demonstrators have been implemented by the PROMISE consortium (one of the 

PROMISE demonstration owners had to withdraw due to organisational changes). These 

demonstrators are the main benchmark against which the success of the new concepts, 

information architecture and implementations are measured. One of these demonstrators 

has been implemented at TKK, as well as a generic vehicle demonstrator that corresponds 

to scenarios of other PROMISE demonstrators. The success of the information 

architecture and the implementations of it are in this paper evaluated mainly based on the 

following criteria:  



1. Degree of fulfilment of the requirements set up by the demonstrator owners. 

2. Scalability.  

3. Flexibility of the system when organisational, hardware or other changes occurs.  

4. To what extent it satisfies the requirements of an Internet of Things. 

5. To what extent it satisfies the requirements of PLIM. 

The structure of the paper is the following: Section 2 explains the background of 

Ubiquitous computing and the Internet of Things. Section 2 also attempts to identify how 

these concepts relate to each other, if and how they could be combined and what remains 

to be done. Section 3 gives a retrospective view of the work performed in these domains 

at the BIT Research Centre of TKK and in the PROMISE project, the resulting 

information architecture and why the information architecture looks like it does. Section 

4 presents two implementations of the information architecture in real-life applications 

made at TKK, followed by conclusions.  

2. FROM UBIQUITOUS COMPUTING TO THE INTERNET OF 
THINGS 

The term Ubiquitous Computing (Ubicomp) was apparently launched by Mark Weiser in 

1988 (Weiser, 1991). The idea of Ubicomp is that computing will eventually be 

embedded into most everyday objects, which will sense, communicate and possibly act in 

a way that is invisible for the human user. Invisibility may not be complete; it could also 

signify that the user interface is conceived in a way that makes user interaction so natural 

that the human user doesn’t realize that she or he is interacting with a potentially complex 

computing environment “behind the scenes”. Simple, everyday examples of such user 

interfaces are changing the desired temperature setting for a room, which in modern 

heating systems may lead to a computation that takes into account the desired 

temperature, the current room temperature, the outside temperature, a thermodynamic 

model of the room and possibly even the weather forecast – or at least the current outside 

temperature gradient. Another example is the car, where the main user interface 

components have remained essentially the same for decades, even though they have now 

become indicators of a “desired state” for a digital control system rather than controlling 

devices directly through a mechanical link.  

Ubicomp is inherently distributed because of the amount of embedded computing in 

devices that need to interact in order to accomplish the tasks they are supposed to. The 

temperature control example mentioned could involve the temperature sensing and 

control module in the room, the controller of the central heating, an outdoor temperature 

sensing unit and a weather forecasting service available over Internet. When Weiser 

wrote his article in 1991, the World Wide Web did not yet exist so such weather 

forecasting services did not exist or at least were not easily integrated with. This is where 

the concept of Internet of Things fits into Ubicomp, i.e. as an extension of mainly locally 

networked smart devices into globally networked computer systems of all sizes, from the 

smallest to the largest. The smallest could be mere object identifiers stored as barcodes, 

Radio Frequency Identification (RFID) tags etc. The largest could be servers, company-



wide Enterprise Resource Planning (ERP) systems, Product Data Management (PDM) 

systems etc., which may not fit into the traditional Ubicomp view.  

The Internet of Things concept is explicitly mentioned e.g. in (Brock, 2001; Huvio et al., 

2002; Gershenfeld et al., 2004) but the name Internet of Things seems to have been used 

in different contexts already before these papers. Unfortunately, the Internet of Things 

concept is often interpreted in a very RFID- and Supply Chain Management (SCM) 

centric way as in (Brock, 2001) and as promoted by the EPCglobal organization 

(http://www.epcglobalinc.org/). This limited view of the Internet of Things concept is 

rather focused on product identification technologies, tracking of product locations and 

stock levels and industrial systems than on everyday objects. Because of the focus on one 

Auto-ID technology of many (RFID) and one specific application area (SCM), the 

information architecture and the interface standards created by EPCglobal tend to have 

limitations that make the name Internet of Things inappropriate for them. Such 

limitations are for instance: 

• Hierarchical and uni-directional: data flows “upwards” only from RFID readers 

towards backend systems (as opposed to the device-to-device communication that is 

typical in Ubicomp systems). 

• The identifier space is “closed” by the support for Electronic Product Codes (EPC) 

only, which are centrally managed by GS1 (as opposed to Ubicomp, where locally 

unique identifiers can be negotiated when needed if existing serial numbers or similar 

are not sufficient). Other alternatives to the EPC are presented e.g. in (Främling et al., 

2007b).  

• The focus on RFID tags and their price means that devices with embedded computing 

power are hardly considered in the architecture.  

In the next section we will describe one alternative definition and implementation of the 

Internet of Things to the EPCglobal one that enables both the Ubicomp and the 

EPCglobal views and would be as universal as the Internet itself. This work was started at 

TKK in 2001, first in the Tekes-funded projects Dialog and EloCore and then in the 

PROMISE (PROMISE, 2004) project of the EU 6
th

 Framework Program.  

3. FROM INTERNET-BASED SHIPMENT TRACKING TO 
PRODUCT LIFECYCLE INFORMATION MANAGEMENT  

This section gives a retrospective overview of how a system that was initially developed 

for global, Internet-based tracking of shipments turned out to also provide much of the 

functionality needed by the Internet of Things, including Ubicomp functionality. The 

reason for providing this overview is that it shows how the same architecture can provide 

a universal solution both to the needs of the RFID/SCM-based Internet of Things and the 

Ubicomp-enabled Internet of Things. Since the beginning of this storyline in 2001, 

industrial pilots and real-life demonstrations have been implemented that demonstrate 

that the architecture is a valid platform for the Ubicomp-enabled Internet of Things.  



3.1. Shipment tracking with the Dialog software 

The Dialog research project (DIALOG, 2001) was defined based on experience gained 

from earlier e-commerce projects where computer programs based on the peer-to-peer 

paradigm had been developed mainly for exchanging sales forecasts between different 

organisations. The initial application area of Dialog was to develop a forwarder 

independent tracking-and-tracing system for worldwide project deliveries. Since the 

Dialog project ended, the name “Dialog” has been used to refer to the software initially 

written during the Dialog project. The development of the Dialog software has continued 

since the Dialog project ended and is still ongoing.  

In order to create a globally unique product identifier that would also indicate where 

information updates about shipments should be sent, a solution labelled “ID@URI” was 

chosen, where URI is a computer address (e.g. 'www.some_company.com') and ID is a 

serial number or any other unique number at the URI indicated. A system using this 

notation was installed in 2002 for forwarder-independent tracking of project deliveries 

(Kärkkäinen et al., 2004). In this pilot, the ID was the unique serial number of the RFID 

tags used, while the URI part was written into the RFID tag’s memory. When a shipment 

was ready for transportation, a shipment label with the RFID tag and other labelling 

information was attached to it. Due to the great number of sub-contractors involved, this 

labelling of shipments took place in many different geographical places and was 

performed by many different organisations but the URI always pointed to the projecting 

company’s “tracking agent”. Whenever a shipment was observed at a tracking point (e.g. 

loaded on truck, handled in a harbour or at a building site), a location update was sent to 

the projecting company, as illustrated by Figure 1. The same principle was used in 

another pilot performed in 2003 but with both ID and URI written with barcodes 

(Kärkkäinen et al., 2005). An extensive comparison between ID@URI and other 

alternatives can be found in (Främling et al., 2007b). 
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Figure 1. ID@URI based tracking, reproduced from (Främling et al., 2003). 

Nearly from the beginning it became clear that shipments are just a more transient variant 

of products or physical objects in general, while the location of an object is simply a 

property among others of the object. Therefore any property of any object could be 

updated or retrieved (if permitted by the security settings) using the same architecture. 

The product agent concept (Främling et al., 2003; 2006) was introduced as the virtual 

counterpart of the physical object that would enable the creation of Intelligent Products 



(Kärkkäinen et al., 2003a). In the SCM domain, these intelligent products were the 

cornerstone behind the product-centric information management concept described in 

(Kärkkäinen et al., 2003b). Identifying the parallel between object-oriented programming 

and product agents made it possible to apply Design Patterns (Gamma et al., 1995) also 

to managing data about product items even when it is spread over organizational borders 

(Främling et al, 2004; Främling et al., 2007a).  

3.2. Product Lifecycle Information Management and the PROMISE project 
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Figure 2. Illustration of PROMISE architecture and connectivity (PROMISE, 2008). 

As a partner of the PROMISE project (Kiritsis et al., 2003; PROMISE, 2004) that started 

in 2004, it was a challenge to see to what extent the Dialog architecture would also be 

suitable for Product Lifecycle Information Management in a context where data needed 

to be collected from many kinds of product items during their whole lifetime. This could 

even imply the collection of data when a product item was used by consumers as in the 

refrigerator and car applications of PROMISE. Since the initial system architecture ideas 

described e.g. in (Anke & Främling, 2005), the PROMISE system architecture has 

gradually evolved into the one illustrated in Figure 2. This architecture uses a peer-to-

peer information exchange model, where any device that implements the Web Service-

based PROMISE Messaging Interface (PMI) can communicate with any other device that 

supports PMI, no matter the size of the device. If the Product Embedded Information 

Device (PEID) does not have enough computational power or communication capabilities 

for implementing PMI, then it connects either through a device-specific Device 

Controller or using the UPnP-based CorePAC interface defined in PROMISE. Otherwise 



it is called a PEID:4 according to a classification based on computation and 

communication capabilities that is documented in PROMISE deliverable “DR5.4: 

Generic PEID roadmap for each group”. 

The PMI is a key interface which enables a web-services based approach, permitting any 

PMI-enabled user to exchange data with another. Depending on the complexity of any 

specific application, this can be achieved on a simple peer-to-peer basis if the two users 

are known to each other, or on a more complex wide-area basis using advanced 

PROMISE Data Services (middleware).  

The PROMISE connectivity model is similar to that of the Internet itself. Where the 

Internet uses the HTTP protocol for transmitting HTML-coded information mainly 

intended for human users, PROMISE uses the PROMISE Messaging Interface (PMI) for 

transmitting XML-coded information mainly intended for automatic processing by 

information systems. It is important to understand these relationships because PROMISE 

in effect proposes an extension to the Internet itself.  

The next section shows how the Dialog system has been used as an implementation 

platform for PMI and the PROMISE architecture in general. As the original Dialog 

architecture and the PROMISE architecture are nearly identical, this implementation task 

mainly consisted in adding a new networking component that uses PMI instead of using 

one of the existing Dialog networking methods. Because Dialog was already from the 

beginning designed to support different protocols and interfaces, adding a new one for 

PMI was rather straightforward.  

4. INTERNET OF THINGS IMPLEMENTED – TWO REAL-LIFE 
EXAMPLES 

Today, many products have an embedded control computer that controls various 

functions of the product. A good example is the computer system embedded in modern 

cars, which monitors the various subsystems, provides the user with reminders about 

scheduled maintenance and notifies the owner of possible error conditions by the 

“Malfunction Indicator Light” that is usually labelled “Check Engine” on the car 

dashboard. Such PEIDs are also starting to appear in ordinary household appliances. In 

this section we look at how such an appliance is integrated with the Dialog platform, and 

how an installation in a real building or home would be configured. We also take a look 

at how vehicle diagnostics can be transmitted using PMI. 

Dialog is a “generic” software in the sense that it provides protocol- and interface-neutral 

message passing mechanisms with message persistence functionality, security 

mechanisms etc. that are abstracted away from the “business logic” itself, implemented 

by “agents”. Figure 3 illustrates the internal architecture of a Dialog node. We see that 

the components involved in sending and receiving messages, and agents, which consume 

and produce messages, are separated as their own classes with a common interface, i.e. 

the receive and send handlers. This signifies that different protocols and messaging 

interfaces can be easily supported. Already before PROMISE, Dialog supported a Java 

remote method invocation (RMI) interface, a Web Service interface using the Simple 

Object Access Protocol (SOAP) and an interface using HTTP POST messages. For 

implementing the PMI, it was sufficient to add new SOAP-based PMI receiver and 



sender classes. A simple and configurable mapping mechanism that is internal to the 

Dialog node defines what messages should go to which agent(s) and what sender should 

be used for which messages.  

 

Figure 3. Internal  architecture of a DIALOG node. 

Dialog agents are free to process the messages as they like, and may send messages at 

will. Dialog was adapted to support PMI-specific functionality by the addition of a PMI-

specific agent, which mainly means implementing Device Controller (DC) functionality. 

As one of the PROMISE demonstrators, support for an intelligent refrigerator control 

system was added to the Dialog system by adding a corresponding DC that enables 

information, alarms and other events to be obtained from the refrigerator and sent to a 

remote location using PMI.  

The statistical data obtained from the appliances installed at the customer’s premises can 

be used to detect service needs in advance, before a failure occurs (condition-based 

maintenance), thus offering improved service for the customer (Cassina et al., 2007). It 

could also be possible to determine in advance which spare parts are needed for the job 

and improve the scheduling of service personnel. This is an example of how a refrigerator 

product-selling activity could gradually change into a service-selling activity, i.e. selling 

“refrigeration services” rather than selling the physical refrigerator itself.  
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Figure 4. A residential gateway acts as a message interface that enables simple product-

embedded information devices to participate in PMI communications over the Internet. 

A specific DC is needed for interfacing with the refrigerator due to the proprietary 

protocol used by the refrigerator. Other possibilities could have been to implement the 

PMI on the refrigerator itself or to implement the more light-weight UPnP-based 

CorePAC protocol on it. However, both options were excluded because they would have 

increased the cost of the system too much to remain commercially defendable. Therefore, 

at least in the near future, such household appliances’ PEIDs are likely to implement a 

simpler protocol for communicating data to a PMI node that functions as the endpoint for 

PMI communications. The PMI node could take the form of a residential gateway, 

similar to the broadband routers on the market today, but equipped with PMI- and DC-

implementing software (Figure 4).   

The PEID is usually involved in controlling functional aspects of the product, such as 

engine control in a car, or climate control of a refrigerator. Another important 

functionality that PEIDs provide is diagnostics. In a state-of-the-art car, the diagnostics 

notifications are only for the driver to notice and act upon. The effectiveness of on-board 

diagnostics could be enhanced by enabling the notifications to pass to the car owner and 

even to the service company directly, for instance via an ordinary mobile phone with 

suitable software. We have implemented such a system on a Nokia Series 60 mobile 

phone by a Java MIDP program capable of acting as a node that sends PMI messages 

over the mobile network with data downloaded from the car’s Engine Control Unit 

(ECU). The connection between the mobile phone and the car’s ECU was implemented 

using a commercially available OBD-II protocol converter connected to the mobile phone 

via Bluetooth. The setup enables diagnostics notifications from the car to be sent to a 



remote node in real time. The remote monitoring node can in turn place a request for the 

PMI node in the mobile phone to send specific sensor values periodically to the remote 

monitoring node. This information can then be used to aid in further problem 

determination, scheduling a time for service, ordering needed spare parts or taking some 

other proactive actions. The collected information could also potentially be transmitted to 

the car manufacturer. If the car manufacturer could collect such real-use information 

from a sufficient amount of cars, it could lead to improved maintenance scheduling, 

product design and manufacturing procedures. This is true also for most other 

manufacturing companies (such as the refrigerator manufacturer), i.e. product design, 

manufacturing and possibly also recycling could be improved if a sufficient amount of in-

use information can be collected.  

5. CONCLUSIONS 

In the introduction, five criteria were proposed for the analysis and assessment of the 

degree of success of the information architecture and implementation presented in this 

paper. Based on the current results, we can conclude the following:  

1. Degree of fulfilment of the requirements set up by the demonstrator owners. What 

comes to the PROMISE information architecture, it has allowed all PROMISE 

demonstrators to be successfully implemented. It has also been admitted both by 

demonstrator-owners and technical solution providers that the current architecture 

is more adequate than an initial information architecture that was rather 

hierarchical and rigid.  The “owner” of the refrigerator demonstrator has also been 

satisfied with the system implementation.  

2. Scalability. The peer-to-peer based information exchange mechanism makes it 

easier to avoid centralised information storage and other potential bottlenecks. 

Because PROMISE can be seen as an extension of the Internet, the PROMISE 

information architecture is in general as scalable as the Internet itself.  

3. Flexibility of the system when organisational, hardware or other changes occurs. 

By the use of PMI for nearly all information exchange, it is easy to split, merge or 

move functionality of the software to new hardware or even new organisations 

because it can be done in a way that is more or less transparent to other parties.  

4. To what extent it satisfies the requirements of an Internet of Things. Any “thing” 

can be connected using the proposed architecture, with support for read and write 

operations, subscriptions to information updates, alarms and similar events. 

“Meta-data” operations are also supported, such as querying for the list of 

properties that can be read, their units etc., as well as updating (through a “write” 

operation) them if needed. Therefore, we consider that most requirements for an 

Internet of Things are fulfilled.  

5. To what extent it satisfies the requirements of PLIM. The architecture was 

designed for the specific needs of PLIM and does allow information retrievals and 

updates about products during their whole lifetime.  

We also claim that the proposed information architecture fulfills the needs of what we 

call the Ubicomp-enabled Internet of Things, as shown by earlier industrial pilots in 



shipment tracking and tracing, the real-life implementations explained in Section 4 and 

other real-life implementations performed in the PROMISE project. Even though we are 

not currently aware of other information architectures with the same scope, partially 

similar but more domain-specific approaches exist such as oBIX (Open Building 

Information Xchange) for “intelligent buildings” or the EPC Network for SCM. Time 

will show what the final architecture will be called and what standards will become 

predominant but at least the building blocks now exist for implementing real-life 

Ubicomp-enabled Internet of Things applications. Such applications would open new 

“service supply chain” market opportunities for manufacturing companies, service 

providers and many other commercial actors so the economical impact on society will be 

significant.  
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