
Information architecture for Intelligent Products

in the Internet of Things

Kary Främling*

Jan Nyman **

*) BIT Research Centre, Helsinki University of Technology, FI-02015, TKK, Finland
E-mail: Kary.Framling@tkk.fi, Tel: +358 50 5980451; Fax: +358 9 451 3665

**) BIT Research Centre, Helsinki University of Technology, FI-02015, TKK, Finland
E-mail: Jan.Nyman@tkk.fi, Tel: +358 9 451 6017; Fax: +358 9 451 3665

ABSTRACT

Purpose of this paper

The paper presents an information architecture for managing product information during

the whole lifecycle about "dumb" products as well as products that have their own

processing capabilities. Real-life implementations presented show the technical feasibility

of the architecture and attempt to illustrate the potential commercial impact.

Design/methodology/approach

As defined in Weiser (1993): “standard experimental computer science”, meaning

construction of working prototypes in sufficient quantity and showing that it works.

Findings

Presentation of two real-world implementations for Product Lifecycle Information

Management, generalisation of these to other kinds of products (appliances, machines,

shipments etc.).

Practical implications (if applicable)

Disseminate the existence of an information architecture with ongoing standardization

efforts that could address increasingly urgent issues of product lifecycle information

management.

What is original/value of paper

No alternative information architecture for the same purpose is known yet. Comparisons

are made with e.g. the EPC Global architecture in order to explain why they are not

sufficient. The implementations described illustrate how consumers, maintenance

providers and manufacturers can be integrated with the architecture in a scalable way.

Keywords: Intelligent Products, Internet of Things, Ubiquitous Computing,

Middleware, Product Lifecycle Information Management

1. INTRODUCTION

At least in the industrialized parts of our planet, most people have grown up with some

vision of intelligent robots, buildings etc. in films such as Star Wars and Star Trek, as

well as in a multitude of Science Fiction books. Despite the enthusiasm for such an

imaginary world, our current world is still relatively far from that vision. The scientific

domain called Ubiquitous Computing (alternatively, Pervasive Computing, Ambient

Intelligence etc.) may be the one that most clearly envisages developing such

environments. A new candidate concept, the Internet of Things, could expand the rather

local view of Ubiquitous Computing in a way that would integrate backend systems of

companies and other organizations with the more embedded processing model of

Ubiquitous Computing. The resulting communication infrastructure could enable any

computing device to communicate with any other computing device (not to forget the

human users), no matter what is their physical size or computational capacity. In this

paper, we present an information architecture that enables this vision. The information

architecture has been validated by industrial pilots performed at Helsinki University of

Technology (TKK) in different application areas. In this paper, we focus on two

implementations related to Product Lifecycle Information Management (PLIM) (Harrison

et al., 2004; Främling et al., 2007b).

In order to make such an information architecture commercially interesting, it also needs

to handle security and copyright issues. These aspects are not covered in this paper but

are covered in a security white paper of the PROMISE project (PROMISE, 2004) and

will be the subject of a separate research paper under preparation. However, as the

proposed information architecture is based mainly on existing Internet technology and

protocols, the existing Internet security models are also applicable here.

The research methodology used in this paper is called “standard experimental computer

science” (Weiser, 1993), who defines it as follows in the context of ubiquitous

computing:

The research method for ubiquitous computing is standard experimental computer

science: the construction of working prototypes of the necessary infrastructure in

sufficient quantity to debug the viability of the systems in everyday use; ourselves and a

few colleagues serving as guinea pigs.

There was originally 11 real-world demonstrators from different domains defined in

PROMISE (vehicles, household equipment, telecom equipment etc.). Ten of these

demonstrators have been implemented by the PROMISE consortium (one of the

PROMISE demonstration owners had to withdraw due to organisational changes). These

demonstrators are the main benchmark against which the success of the new concepts,

information architecture and implementations are measured. One of these demonstrators

has been implemented at TKK, as well as a generic vehicle demonstrator that corresponds

to scenarios of other PROMISE demonstrators. The success of the information

architecture and the implementations of it are in this paper evaluated mainly based on the

following criteria:

1. Degree of fulfilment of the requirements set up by the demonstrator owners.

2. Scalability.

3. Flexibility of the system when organisational, hardware or other changes occurs.

4. To what extent it satisfies the requirements of an Internet of Things.

5. To what extent it satisfies the requirements of PLIM.

The structure of the paper is the following: Section 2 explains the background of

Ubiquitous computing and the Internet of Things. Section 2 also attempts to identify how

these concepts relate to each other, if and how they could be combined and what remains

to be done. Section 3 gives a retrospective view of the work performed in these domains

at the BIT Research Centre of TKK and in the PROMISE project, the resulting

information architecture and why the information architecture looks like it does. Section

4 presents two implementations of the information architecture in real-life applications

made at TKK, followed by conclusions.

2. FROM UBIQUITOUS COMPUTING TO THE INTERNET OF
THINGS

The term Ubiquitous Computing (Ubicomp) was apparently launched by Mark Weiser in

1988 (Weiser, 1991). The idea of Ubicomp is that computing will eventually be

embedded into most everyday objects, which will sense, communicate and possibly act in

a way that is invisible for the human user. Invisibility may not be complete; it could also

signify that the user interface is conceived in a way that makes user interaction so natural

that the human user doesn’t realize that she or he is interacting with a potentially complex

computing environment “behind the scenes”. Simple, everyday examples of such user

interfaces are changing the desired temperature setting for a room, which in modern

heating systems may lead to a computation that takes into account the desired

temperature, the current room temperature, the outside temperature, a thermodynamic

model of the room and possibly even the weather forecast – or at least the current outside

temperature gradient. Another example is the car, where the main user interface

components have remained essentially the same for decades, even though they have now

become indicators of a “desired state” for a digital control system rather than controlling

devices directly through a mechanical link.

Ubicomp is inherently distributed because of the amount of embedded computing in

devices that need to interact in order to accomplish the tasks they are supposed to. The

temperature control example mentioned could involve the temperature sensing and

control module in the room, the controller of the central heating, an outdoor temperature

sensing unit and a weather forecasting service available over Internet. When Weiser

wrote his article in 1991, the World Wide Web did not yet exist so such weather

forecasting services did not exist or at least were not easily integrated with. This is where

the concept of Internet of Things fits into Ubicomp, i.e. as an extension of mainly locally

networked smart devices into globally networked computer systems of all sizes, from the

smallest to the largest. The smallest could be mere object identifiers stored as barcodes,

Radio Frequency Identification (RFID) tags etc. The largest could be servers, company-

wide Enterprise Resource Planning (ERP) systems, Product Data Management (PDM)

systems etc., which may not fit into the traditional Ubicomp view.

The Internet of Things concept is explicitly mentioned e.g. in (Brock, 2001; Huvio et al.,

2002; Gershenfeld et al., 2004) but the name Internet of Things seems to have been used

in different contexts already before these papers. Unfortunately, the Internet of Things

concept is often interpreted in a very RFID- and Supply Chain Management (SCM)

centric way as in (Brock, 2001) and as promoted by the EPCglobal organization

(http://www.epcglobalinc.org/). This limited view of the Internet of Things concept is

rather focused on product identification technologies, tracking of product locations and

stock levels and industrial systems than on everyday objects. Because of the focus on one

Auto-ID technology of many (RFID) and one specific application area (SCM), the

information architecture and the interface standards created by EPCglobal tend to have

limitations that make the name Internet of Things inappropriate for them. Such

limitations are for instance:

• Hierarchical and uni-directional: data flows “upwards” only from RFID readers

towards backend systems (as opposed to the device-to-device communication that is

typical in Ubicomp systems).

• The identifier space is “closed” by the support for Electronic Product Codes (EPC)

only, which are centrally managed by GS1 (as opposed to Ubicomp, where locally

unique identifiers can be negotiated when needed if existing serial numbers or similar

are not sufficient). Other alternatives to the EPC are presented e.g. in (Främling et al.,

2007b).

• The focus on RFID tags and their price means that devices with embedded computing

power are hardly considered in the architecture.

In the next section we will describe one alternative definition and implementation of the

Internet of Things to the EPCglobal one that enables both the Ubicomp and the

EPCglobal views and would be as universal as the Internet itself. This work was started at

TKK in 2001, first in the Tekes-funded projects Dialog and EloCore and then in the

PROMISE (PROMISE, 2004) project of the EU 6
th

 Framework Program.

3. FROM INTERNET-BASED SHIPMENT TRACKING TO
PRODUCT LIFECYCLE INFORMATION MANAGEMENT

This section gives a retrospective overview of how a system that was initially developed

for global, Internet-based tracking of shipments turned out to also provide much of the

functionality needed by the Internet of Things, including Ubicomp functionality. The

reason for providing this overview is that it shows how the same architecture can provide

a universal solution both to the needs of the RFID/SCM-based Internet of Things and the

Ubicomp-enabled Internet of Things. Since the beginning of this storyline in 2001,

industrial pilots and real-life demonstrations have been implemented that demonstrate

that the architecture is a valid platform for the Ubicomp-enabled Internet of Things.

3.1. Shipment tracking with the Dialog software

The Dialog research project (DIALOG, 2001) was defined based on experience gained

from earlier e-commerce projects where computer programs based on the peer-to-peer

paradigm had been developed mainly for exchanging sales forecasts between different

organisations. The initial application area of Dialog was to develop a forwarder

independent tracking-and-tracing system for worldwide project deliveries. Since the

Dialog project ended, the name “Dialog” has been used to refer to the software initially

written during the Dialog project. The development of the Dialog software has continued

since the Dialog project ended and is still ongoing.

In order to create a globally unique product identifier that would also indicate where

information updates about shipments should be sent, a solution labelled “ID@URI” was

chosen, where URI is a computer address (e.g. 'www.some_company.com') and ID is a

serial number or any other unique number at the URI indicated. A system using this

notation was installed in 2002 for forwarder-independent tracking of project deliveries

(Kärkkäinen et al., 2004). In this pilot, the ID was the unique serial number of the RFID

tags used, while the URI part was written into the RFID tag’s memory. When a shipment

was ready for transportation, a shipment label with the RFID tag and other labelling

information was attached to it. Due to the great number of sub-contractors involved, this

labelling of shipments took place in many different geographical places and was

performed by many different organisations but the URI always pointed to the projecting

company’s “tracking agent”. Whenever a shipment was observed at a tracking point (e.g.

loaded on truck, handled in a harbour or at a building site), a location update was sent to

the projecting company, as illustrated by Figure 1. The same principle was used in

another pilot performed in 2003 but with both ID and URI written with barcodes

(Kärkkäinen et al., 2005). An extensive comparison between ID@URI and other

alternatives can be found in (Främling et al., 2007b).

 Transp.comp. B Transp.comp. A Destination Transp.comp. C

Set
ID@URI

ID@URI

Manufacturer’s

tracking agent at

URI

Location updates

Manufacturer

ID@URI ID@URI ID@URI

Figure 1. ID@URI based tracking, reproduced from (Främling et al., 2003).

Nearly from the beginning it became clear that shipments are just a more transient variant

of products or physical objects in general, while the location of an object is simply a

property among others of the object. Therefore any property of any object could be

updated or retrieved (if permitted by the security settings) using the same architecture.

The product agent concept (Främling et al., 2003; 2006) was introduced as the virtual

counterpart of the physical object that would enable the creation of Intelligent Products

(Kärkkäinen et al., 2003a). In the SCM domain, these intelligent products were the

cornerstone behind the product-centric information management concept described in

(Kärkkäinen et al., 2003b). Identifying the parallel between object-oriented programming

and product agents made it possible to apply Design Patterns (Gamma et al., 1995) also

to managing data about product items even when it is spread over organizational borders

(Främling et al, 2004; Främling et al., 2007a).

3.2. Product Lifecycle Information Management and the PROMISE project

PMI

DC: Device Controller

PMI: PROMISE Messaging Interface

PDKM: Product Data- and Knowledge

Management system

DSS: Decision Support System

ERP: Enterprise Resource Planning

WMS: Warehouse Management System

Figure 2. Illustration of PROMISE architecture and connectivity (PROMISE, 2008).

As a partner of the PROMISE project (Kiritsis et al., 2003; PROMISE, 2004) that started

in 2004, it was a challenge to see to what extent the Dialog architecture would also be

suitable for Product Lifecycle Information Management in a context where data needed

to be collected from many kinds of product items during their whole lifetime. This could

even imply the collection of data when a product item was used by consumers as in the

refrigerator and car applications of PROMISE. Since the initial system architecture ideas

described e.g. in (Anke & Främling, 2005), the PROMISE system architecture has

gradually evolved into the one illustrated in Figure 2. This architecture uses a peer-to-

peer information exchange model, where any device that implements the Web Service-

based PROMISE Messaging Interface (PMI) can communicate with any other device that

supports PMI, no matter the size of the device. If the Product Embedded Information

Device (PEID) does not have enough computational power or communication capabilities

for implementing PMI, then it connects either through a device-specific Device

Controller or using the UPnP-based CorePAC interface defined in PROMISE. Otherwise

it is called a PEID:4 according to a classification based on computation and

communication capabilities that is documented in PROMISE deliverable “DR5.4:

Generic PEID roadmap for each group”.

The PMI is a key interface which enables a web-services based approach, permitting any

PMI-enabled user to exchange data with another. Depending on the complexity of any

specific application, this can be achieved on a simple peer-to-peer basis if the two users

are known to each other, or on a more complex wide-area basis using advanced

PROMISE Data Services (middleware).

The PROMISE connectivity model is similar to that of the Internet itself. Where the

Internet uses the HTTP protocol for transmitting HTML-coded information mainly

intended for human users, PROMISE uses the PROMISE Messaging Interface (PMI) for

transmitting XML-coded information mainly intended for automatic processing by

information systems. It is important to understand these relationships because PROMISE

in effect proposes an extension to the Internet itself.

The next section shows how the Dialog system has been used as an implementation

platform for PMI and the PROMISE architecture in general. As the original Dialog

architecture and the PROMISE architecture are nearly identical, this implementation task

mainly consisted in adding a new networking component that uses PMI instead of using

one of the existing Dialog networking methods. Because Dialog was already from the

beginning designed to support different protocols and interfaces, adding a new one for

PMI was rather straightforward.

4. INTERNET OF THINGS IMPLEMENTED – TWO REAL-LIFE
EXAMPLES

Today, many products have an embedded control computer that controls various

functions of the product. A good example is the computer system embedded in modern

cars, which monitors the various subsystems, provides the user with reminders about

scheduled maintenance and notifies the owner of possible error conditions by the

“Malfunction Indicator Light” that is usually labelled “Check Engine” on the car

dashboard. Such PEIDs are also starting to appear in ordinary household appliances. In

this section we look at how such an appliance is integrated with the Dialog platform, and

how an installation in a real building or home would be configured. We also take a look

at how vehicle diagnostics can be transmitted using PMI.

Dialog is a “generic” software in the sense that it provides protocol- and interface-neutral

message passing mechanisms with message persistence functionality, security

mechanisms etc. that are abstracted away from the “business logic” itself, implemented

by “agents”. Figure 3 illustrates the internal architecture of a Dialog node. We see that

the components involved in sending and receiving messages, and agents, which consume

and produce messages, are separated as their own classes with a common interface, i.e.

the receive and send handlers. This signifies that different protocols and messaging

interfaces can be easily supported. Already before PROMISE, Dialog supported a Java

remote method invocation (RMI) interface, a Web Service interface using the Simple

Object Access Protocol (SOAP) and an interface using HTTP POST messages. For

implementing the PMI, it was sufficient to add new SOAP-based PMI receiver and

sender classes. A simple and configurable mapping mechanism that is internal to the

Dialog node defines what messages should go to which agent(s) and what sender should

be used for which messages.

Figure 3. Internal architecture of a DIALOG node.

Dialog agents are free to process the messages as they like, and may send messages at

will. Dialog was adapted to support PMI-specific functionality by the addition of a PMI-

specific agent, which mainly means implementing Device Controller (DC) functionality.

As one of the PROMISE demonstrators, support for an intelligent refrigerator control

system was added to the Dialog system by adding a corresponding DC that enables

information, alarms and other events to be obtained from the refrigerator and sent to a

remote location using PMI.

The statistical data obtained from the appliances installed at the customer’s premises can

be used to detect service needs in advance, before a failure occurs (condition-based

maintenance), thus offering improved service for the customer (Cassina et al., 2007). It

could also be possible to determine in advance which spare parts are needed for the job

and improve the scheduling of service personnel. This is an example of how a refrigerator

product-selling activity could gradually change into a service-selling activity, i.e. selling

“refrigeration services” rather than selling the physical refrigerator itself.

PMI messages, such as:
• sensor readings
• periodic statistics
• alarms

Residential gateway
node, running Dialog

Service company node
(web application server with

Dialog)

Other data
Consumers

(e.g. manufacturer) ...

Intelligent

refrigerator

Car diagnostics
and sensor

readings with
OBD-II

Light-weight PMI node

Figure 4. A residential gateway acts as a message interface that enables simple product-

embedded information devices to participate in PMI communications over the Internet.

A specific DC is needed for interfacing with the refrigerator due to the proprietary

protocol used by the refrigerator. Other possibilities could have been to implement the

PMI on the refrigerator itself or to implement the more light-weight UPnP-based

CorePAC protocol on it. However, both options were excluded because they would have

increased the cost of the system too much to remain commercially defendable. Therefore,

at least in the near future, such household appliances’ PEIDs are likely to implement a

simpler protocol for communicating data to a PMI node that functions as the endpoint for

PMI communications. The PMI node could take the form of a residential gateway,

similar to the broadband routers on the market today, but equipped with PMI- and DC-

implementing software (Figure 4).

The PEID is usually involved in controlling functional aspects of the product, such as

engine control in a car, or climate control of a refrigerator. Another important

functionality that PEIDs provide is diagnostics. In a state-of-the-art car, the diagnostics

notifications are only for the driver to notice and act upon. The effectiveness of on-board

diagnostics could be enhanced by enabling the notifications to pass to the car owner and

even to the service company directly, for instance via an ordinary mobile phone with

suitable software. We have implemented such a system on a Nokia Series 60 mobile

phone by a Java MIDP program capable of acting as a node that sends PMI messages

over the mobile network with data downloaded from the car’s Engine Control Unit

(ECU). The connection between the mobile phone and the car’s ECU was implemented

using a commercially available OBD-II protocol converter connected to the mobile phone

via Bluetooth. The setup enables diagnostics notifications from the car to be sent to a

remote node in real time. The remote monitoring node can in turn place a request for the

PMI node in the mobile phone to send specific sensor values periodically to the remote

monitoring node. This information can then be used to aid in further problem

determination, scheduling a time for service, ordering needed spare parts or taking some

other proactive actions. The collected information could also potentially be transmitted to

the car manufacturer. If the car manufacturer could collect such real-use information

from a sufficient amount of cars, it could lead to improved maintenance scheduling,

product design and manufacturing procedures. This is true also for most other

manufacturing companies (such as the refrigerator manufacturer), i.e. product design,

manufacturing and possibly also recycling could be improved if a sufficient amount of in-

use information can be collected.

5. CONCLUSIONS

In the introduction, five criteria were proposed for the analysis and assessment of the

degree of success of the information architecture and implementation presented in this

paper. Based on the current results, we can conclude the following:

1. Degree of fulfilment of the requirements set up by the demonstrator owners. What

comes to the PROMISE information architecture, it has allowed all PROMISE

demonstrators to be successfully implemented. It has also been admitted both by

demonstrator-owners and technical solution providers that the current architecture

is more adequate than an initial information architecture that was rather

hierarchical and rigid. The “owner” of the refrigerator demonstrator has also been

satisfied with the system implementation.

2. Scalability. The peer-to-peer based information exchange mechanism makes it

easier to avoid centralised information storage and other potential bottlenecks.

Because PROMISE can be seen as an extension of the Internet, the PROMISE

information architecture is in general as scalable as the Internet itself.

3. Flexibility of the system when organisational, hardware or other changes occurs.

By the use of PMI for nearly all information exchange, it is easy to split, merge or

move functionality of the software to new hardware or even new organisations

because it can be done in a way that is more or less transparent to other parties.

4. To what extent it satisfies the requirements of an Internet of Things. Any “thing”

can be connected using the proposed architecture, with support for read and write

operations, subscriptions to information updates, alarms and similar events.

“Meta-data” operations are also supported, such as querying for the list of

properties that can be read, their units etc., as well as updating (through a “write”

operation) them if needed. Therefore, we consider that most requirements for an

Internet of Things are fulfilled.

5. To what extent it satisfies the requirements of PLIM. The architecture was

designed for the specific needs of PLIM and does allow information retrievals and

updates about products during their whole lifetime.

We also claim that the proposed information architecture fulfills the needs of what we

call the Ubicomp-enabled Internet of Things, as shown by earlier industrial pilots in

shipment tracking and tracing, the real-life implementations explained in Section 4 and

other real-life implementations performed in the PROMISE project. Even though we are

not currently aware of other information architectures with the same scope, partially

similar but more domain-specific approaches exist such as oBIX (Open Building

Information Xchange) for “intelligent buildings” or the EPC Network for SCM. Time

will show what the final architecture will be called and what standards will become

predominant but at least the building blocks now exist for implementing real-life

Ubicomp-enabled Internet of Things applications. Such applications would open new

“service supply chain” market opportunities for manufacturing companies, service

providers and many other commercial actors so the economical impact on society will be

significant.

ACKNOWLEDGEMENTS

The work reported here has mainly been funded by Tekes (Finnish Funding Agency for

Technology and Innovation) through the Dialog and EloCore research projects and by the

EU 6
th

 Framework Program through the PROMISE project. The industrial partners of the

Dialog project have also contributed financially, while the industrial partners of both the

Dialog and PROMISE projects have provided useful insight into real-world applications,

as well as the possibility to perform pilot installations with access to their equipment,

infrastructure and professional experience.

The PROMISE architecture and the PMI are a joint result of PROMISE partners, notably

TKK, Trackway (especially Björn Forss and Jouni Petrow), Indyon (David Potter), SAP

(several participants), InMediasP (notably Michael Marquard) and BIBA (notably

Robertino Solanas). The authors hope they have not forgotten any key contributors but if

we have done so, we present our excuses in advance.

In addition to the authors, especially Vincent Michel from Ecole Nationale Supérieure

des Mines de Saint-Etienne, France, has done a major programming effort on the PMI

implementation in Dialog. The authors would like to thank him and earlier contributors to

the Dialog software for their effort.

The authors are also grateful to the reviewers who have shown a good understanding of

the paper and proposed useful improvements to the initially submitted version.

REFERENCES

Anke, J., Främling, K. (2005), “Distributed Decision Support in a PLM scenario”, in:

Proceedings of Product Data Technology Europe 14th Symposium, 26-28

September 2005, Amsterdam, Netherlands, pp 129-137.

Brock, D. L. (2001), The electronic product code (EPC)-a naming scheme, Technical

Report MIT-AUTOIDWH-002, MIT Auto-Id Center, Massachusetts Institute of

Technology, Available from http://www.autoidlabs.org/uploads/media/MIT-

AUTOID-WH-002.pdf, accessed March 26, 2008.

Cassina, T., Tomasella, M., Matta, A., Taisch, M., Fclicctti, G. (2007), “Closed-loop

PLM of Household Appliances: An Industrial Approach”, in: Olhager, J., Persson,

K. (Ed.), IFIP International Federation for Information Processing, Volume 246,

Advances in Production Management Systems, Boston: Springer, pp. 153–160.

DIALOG (2001), Distributed information architectures for collaborative logistics,

Available from http://dialog.hut.fi/, accessed March 20, 2008.

Främling, K., Holmström, J., Ala-Risku, T., Kärkkäinen, M. (2003), Product agents for

handling information about physical objects, Technical Report of Laboratory of

Information Processing Science series B, TKO-B 153/03, Helsinki University of

Technology, 2003.

Främling, K., Kärkkäinen, M., Ala-Risku, T., Holmström, J. (2004), “Managing Product

Information in Supplier Networks by Object Oriented Programming Concepts”, in:

Taisch, M., Filos, E., Garello, P., Lewis, K., Montorio, M. (Ed.), Proceedings of

IMS International Forum, Cernobbio, Italy, 17-19 May 2004, pp. 1424-1431.

Främling, K., Kärkkäinen, M., Ala-Risku, T., Holmström, J. (2006), ”Agent-based Model

for Managing Composite Product Information”, Computers in Industry, Vol. 57 No.

1, pp. 72-81.

Främling, K., Ala-Risku, T., Kärkkäinen, M., Holmström, J. (2007a) “Design Patterns for

Managing Product Life Cycle Information”, Communications of the ACM, Vol. 50

No. 6, pp. 75-79.

Främling, K., Harrison, M., Brusey, J., Petrow, J. (2007b), “Requirements on unique

identifiers for managing product lifecycle information - comparison of alternative

approaches”, International Journal of Computer Integrated Manufacturing , Vol.

20 Issue 7, pp. 715-726.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995), Design Patterns: elements of

reusable object-oriented software, Addison-Wesley Publishing Company, Reading,

Massachusetts.

Gershenfeld, N., Krikorian, R., Cohen, D. (2004), “The Internet of Things”, Scientific

American, Vol. 291 No. 4, pp.76–81.

Harrison, M, McFarlane, D., Parlikad, A.K., Chien Y.W. (2004), “Information

management in the product lifecycle - the role of networked RFID”, in Proceedings

of 2nd IEEE International Conference on Industrial Informatics, Berlin, Germany

24-26 June 2004.

Huvio, E., Grönvall, J., Främling, K (2002), “Tracking and tracing parcels using a

distributed computing Approach”, in: Solem, O. (Ed.), Proceedings of the 14th

Annual Conference for Nordic Researchers in Logistics (NOFOMA'2002),

Trondheim, Norway, 12-14 June 2002, pp. 29-43.

Kiritsis, D., Bufardi, A., Xirouchakis, P.C (2003), “Research issues on product lifecycle

management and information tracking using smart embedded systems”, Advanced

Engineering Informatics, Vol. 17 No. 3-4, pp. 189-202.

Kärkkäinen, M., Holmström, J., Främling, K., Artto, K. (2003a), “Intelligent products - a

step towards a more effective project delivery chain”, Computers in Industry, Vol.

50 No. 2, pp. 141-151.

Kärkkäinen, M., Ala-Risku, T., Främling, K. (2003b), “The product centric approach: a

solution to supply network information management problems?”, Computers in

Industry, Vol. 52 No. 2, pp. 147-159.

Kärkkäinen, M., Ala-Risku, T., Främling, K., (2004), “Efficient Tracking for Short-Term

Multi-Company Networks”, Int. J. of Physical Distribution and Logistics

Management, Vol. 34 No. 7, pp. 545-564

Kärkkäinen, M., Ala-Risku, T., Främling, K., Collin, J. (2005), ”Establishing inventory

transparency to temporary storage locations”, in: Proceedings of Advances in

Production Management Systems (APMS), 18-21 September 2005, Washington,

USA.

PROMISE (2004), Product Lifecycle Management and Information Tracking using Smart

Embedded Systems, Available from http://www.promise-plm.com/ and

http://www.promise.no/, accessed March 20, 2008.

PROMISE (2008), PROMISE Architecture Series Volume 1: Architecture Overview,

Forthcoming.

Weiser, M. (1991), “The computer for the twenty-lirst century”, Scientific American, Vol.

265 No. 3, pp. 94-104.

Weiser, M. (1993), “Some computer science issues in ubiquitous computing”,

Communications of the ACM, Vol. 36 No. 7, pp. 75-84.

