
Managing Product Information in Supplier
Networks by Object Oriented Programming

Concepts
Kary Främling*, Mikko Kärkkäinen**, Timo Ala-Risku**, Jan Holmström**

*) Department of Computer Science and Engineering, Helsinki University of Technology, P.O. Box
5400, FIN-02015 HUT, Finland

**) Department of Industrial Management and Engineering, Helsinki University of Technology, PO
BOX 9555, FIN-02015 HUT, Finland

Abstract
As the number of companies participating in the manufacturing of products increases, the challenges on
managing product related information over its life cycle also increase. A major issue is how to manage product-
related information when it is created and stored on computer systems of multiple companies. Object-oriented
programming (OOP) is a well-tested framework for managing information in computer programming. In this
paper, we emphasize the similarities between OOP and product agent based information management models
for handling product information. The well-known OOP concept of design patterns is shown to be applicable
also to managing product information in supplier networks. The composite and observer design patterns are
applied to two typical information management tasks using product agents. Their implementation as middleware
software components is outlined, together with results obtained from pilot installations in a multi-company
environment.

Keywords
Product agent, object-oriented programming, design pattern, product identity, middleware

1 Introduction

The increasing demands on product lifecycle management means that information about
products has to be easily accessible during the product’s entire lifetime. At the same time, the
intensifying technical sophistication of products and the increasingly complex supplier
networks make managing the information more challenging than ever [Kärkkäinen, Ala-
Risku, Främling, 2003]. This is why vast amounts of product and component information are
currently pushed forward in the supplier network so that all information can be associated
with the final product [Främling, Holmström, Ala-Risku, Kärkkäinen, 2003]. However, in
complex products this can lead to information overflow in the downstream supply chain,
when the amount and sophistication of product components increases [van Dorp, 2002].
Transferring product information between supplier network members is technically
challenging. As shown by current EDI implementations, implementing such information
links is costly and time-consuming for all participating companies. Even though information
links exist, handling changes in products and in the information about them is not an easy
task, especially when done on a product item level. The challenge is to know where the
information should be updated if there are multiple copies of it in different companies.
In software engineering, object-oriented programming (OOP) was developed as a solution to
similar problems that initially occurred mainly in simulation systems and in graphical user
interfaces. Both these tasks require managing great amounts of structured data, which is now
the challenge also with managing product information. In this paper, we propose an agent-
based architecture where agents fulfil the same role as objects in OOP. The main technical

 1

difference is the fact that agents need to be able to communicate over company bounds, while
objects usually communicate inside a program running on a single computer.
Now that Internet is becoming universally accessible (at least in the industrial context),
product information can be made available anywhere without copying it through a supplier
network. Many companies already have existing web services, where product information is
accessible. The challenge is how to easily know where that data is, how to access it, how to
distribute the data to all parties needing it, and how to update the data in all places of storage.
A simple solution is that the manufacturer of a product attaches product- or item-specific
identities on all products manufactured. If the identities are globally unique, they can be used
as references to where the product (or product item) information is accessible. Such an
identity corresponds to an object reference in OOP, while message passing between agents
corresponds to method calls in OOP. With these basic elements, it is possible to use standard
OOP data structures and practices for managing product information in a tested way that is
already tested.
Further in this paper we show in more detail how product agents can benefit from OOP
methods with only simple amendments to the present IT services. Section 2 gives an
overview of OOP and section 3 describes the relation between OOP and product agents.
Section 4 shows how OOP containers and design patterns can be applied to handling product
information of complex products. Section 5 explains how these methods have been
implemented and tested in industrial pilot installations, followed by conclusions.

2 Object Oriented Programming

During the 1980’s, the old procedural programming paradigm changed into an object-
oriented paradigm. A main reason for this was that object-oriented programming [Dahl,
Nygaard, 1966] makes it easier to manage data and functionality of a program by
concentrating them around the object-concept. This means that anyone (usually another
object) that has a reference to the object can access information about the object through the
object’s methods. In software engineering, OOP has become the dominant paradigm.
A general, but at least universally acceptable, definition of an object is that “an object is a
collection of structured information”. Objects store information both directly through basic
data types, e.g. text and numbers, and through references to other objects. Contents of objects
can only be accessed through their public interface, which in OOP is generally called
encapsulation. An interface only declares methods that implementing classes have to
implement, but it does not provide any method implementations. Method declarations
contain 1) a method name, 2) a list of parameters and their type and 3) the type of the value
returned by the method. The returned value can also be a reference to an object.
Inheritance is another key feature of OOP. Inheritance signifies the ability to derive new
classes that inherit much of their code and functionality from the classes on which they are
based. Inheritance can be extended to the concept of implementing one or more interfaces.
Implementing interfaces is the way that multiple inheritance is done in the Java programming
language [Arnold, Gosling, 1996], for instance. Inheritance also allows for polymorphism,
which signifies that methods declared in the interface may be called for objects of any class
implementing the interface.
Standard object containers (or actually collections of references to objects) exist in OOP at
least since the Smalltalk programming language [Goldberg, Robson, 1983]. Object
containers enable one-to-many relationships. Object containers have obvious counterparts in
the real world, e.g. containers, packages, sub-assemblies etc. More complex structures, e.g.
hierarchies, can be constructed using object containers in standard ways called Design
Patterns [Gamma, Helm, Johnson, Vlissides, 1995]. Design Patterns are reference solutions

 2

to many information management tasks, which have been designed by experienced
programmers and tested in multiple applications.

3 Product Agents

Where OOP offers “object-centric information management”, product agents offer “Product
centric information management” [Kärkkäinen, Holmström, Främling, Artto, 2003],
[Kärkkäinen, Främling, Ala-Risku, 2003], [Kärkkäinen, Ala-Risku, Främling, 2003], where
information regarding a product is retrieved over information networks when needed using
unique product identities as references. Similar efficiency gains as those obtained by moving
to OOP can be expected by moving to agent-based product information management.
An agent is implemented as a software component that is accessible over Internet using some
standardized protocol, e.g. http, SOAP. The reference to an agent has to be globally unique
and indicate the Internet address where the agent can be accessed. For the agent reference, we
have proposed using an ID@URI format [Främling, 2002], [Kärkkäinen, Främling, Ala-
Risku, 2003], where the URI part identifies a resource, whose uniqueness is guaranteed by
definition [Berners-Lee, Fielding, Irvine, Masinter, 1998]. The ID part can use some existing
identification standard as long as it remains unique inside the address space of the URI
[Huvio, Grönvall, Främling, 2002]. The Auto-ID Centre at MIT has also identified the need
for globally unique identifiers. The Electronic Product Code (EPC) [Brock, 2001] has been
developed for this purpose, but it still needs to become widely accepted and integrated into
companies before becoming universally usable. An EPC also makes it possible to access the
URI part through the Object Name Service (ONS) [Auto-ID Center, 2003a]. ONS
specifications are currently on a draft level, but using EPC as the ID part in ID@URI enables
developing Auto-ID compatible applications before the ONS infrastructure is operational.
In OOP, the communication between objects is based on method calls, but in the product
agent concept communication is performed through messages between the product agents,
typically based on XML. The association between methods and messages is not new,
[Goldberg, Robson, 1983] for instance call communication between objects “message
passing”, not “method calling”. Interfaces have their direct correspondence in common
communication protocols, e.g. SOAP. Object containers are implemented by using database
tables as explained in section 5.2. Table 1 summarises the relationships between these basic
concepts of OOP and agent-based systems.
OOP concept Product agent concept
Object Agent: Internet-accessible software component
Object reference EPC, ID@URI or similar
Method Message
Interface Interface defining messages and message formats
Object Container Database table for object relations

Table 1. Correspondence between basic concepts in OOP and Agent systems.
Using these basic parallels between OOP and agent systems, we will next study how OOP
collections and Design Patterns can be used for handling information in two typical industrial
contexts.

4 Design patterns for communicating product agents

In supplier networks, product information may have to be fetched from several sources. The
same applies to information updates, where the updated information has to be forwarded to
the information systems of all companies that are concerned by the update. Several projects
 3

conducted with industrial partners at Helsinki University of Technology have revealed that
this is a major issue for information management. Two common industrial requirements and
solution models for them are discussed in this section:

1. Composite products. These are typically products that contain sub-assemblies made
by different companies [Aerts, Szirbik, Goossenaerts, 2002], [Främling, 2002],
[Främling, Holmström, Ala-Risku, Kärkkäinen, 2003]. Shipment units, e.g.
containers, pallets etc., are also treated under this title.

2. Observers. Companies that have not manufactured sub-assemblies may also need to
receive information updates, even though they do not provide any information about
the product. A transportation company, the recipient of a product in transport, or the
users of recalled products are examples of these kinds of companies.

Design patterns used in OOP exist under similar names for both of these requirements.

4.1 Composite
One of the most important design patterns presented in OOP is the “Composite” design
pattern [Gamma, Helm, Johnson, Vlissides, 1995]. The intent of this design pattern is to
compose objects into tree structures to represent part-whole hierarchies, where individual
objects and compositions can be treated uniformly. One of the most common uses of this
design pattern is in drawing programs, where graphical objects may be grouped together to
form new objects, which can then be grouped together with others etc. A set of operations is
then applicable both to groups and objects.
The same is true for both products and shipment units used in transport, which usually
contain parts that come from many different companies. This signifies that physical product
items become parts of each other, so the information related to them becomes interconnected.
Often the product individual forms a multi-level hierarchy, in which a product individual
consists of a set of other product individuals as illustrated in Figure 1.

Car

Engine

Injection system
Made by company D

Made by company A

Made by company B
ABS system

Made by company C

Figure 1. Example of composite product hierarchy.

The construction of composite products usually does not change too much during the life
cycle of most products, but it is a vital piece of information to manage when changes occur.
Such changes occur when a shipment is transferred from one transport container to another,
or when a part of a product is replaced with another during maintenance or re-furbishing.
Figure 2 illustrates a composite product, where every part of the product has a list of
references to the parts they contain in ID@URI format, and the propagation of an
information update, e.g. location update, through the containment hierarchy. In many cases,
only the identifier of the “outermost” part is accessible for reading. The outermost part is also
the one at the top of the containment hierarchy, which makes it easy to propagate the
information update to all the parts of the containment hierarchy. Fetching information about
composite products works in a similar way. All companies in Figure 2 have product agents
that receive the messages and autonomously decide on what information should be
forwarded. This is important because it allows every company to control exactly what
information is sent where.

 4

 10056754@comp4.com

1034@comp3.fi

261@comp1.com

262@comp1.com

263@comp1.com

1035@comp3.fi

264@comp2.com

261@comp2.com

266@comp2.com

Information
update

comp3.com comp4.com

comp1.com

comp2.com

10056754 1034

1035

261, 262, 263

264, 261, 266
Figure 2. The construction of a composite product and the propagation of information

updates through the composite hierarchy.
The “Composite” design pattern recommends using bi-directional links in the hierarchy,
which means that information can be fetched and updated by reading the identifier of any
part of the composite. Messages currently implemented from the “Composite” design pattern
are “GetComposite” (returns list of parts), “add” (as optional parameter of existing
“LocationUpdateMessage”) and “remove”. Removing a part from a composite product can
be done either explicitly by sending a message or implicitly by receiving a location update
message that indicates that the part has been removed from the composite. We assume that
the best way to handle removal of parts will turn out to be rather application-specific. A more
thorough description of the information management challenges of complex products as well
as a more detailed description of the proposed solution with product agents can be found in
[Främling, Holmström, Ala-Risku, Kärkkäinen, 2003].

4.2 Observer
The intent of the “Observer” design pattern is to define one-to-many dependencies between
objects so that when one object changes state, all its dependents are notified and updated
automatically [Gamma, Helm, Johnson, Vlissides, 1995]. One of the most common uses of
this design pattern is in graphical user interfaces (GUI), where user actions on one GUI
element also affect other GUI elements. Standard GUI classes of the Java language are an
example of this, where the observer pattern is used in numerous “listener interfaces”. This
can be used for propagating information updates in cases where the “Composite” pattern is
not applicable, e.g. when both the sender and the receiver need to track a shipment, or when
break-downs of product components need to be communicated to a logistics company
handling spares replenishments in addition to the producers of the product.

Information
update

comp3.com comp1.com

comp5.com

comp6.com

10056732

151

13456

13456

543

comp2.com

comp4.com

456

Figure 3. Propagation of information update through “Observer” references.

 5

Figure 3 illustrates how an information update could be propagated through “Observer”
references. Items 13456@comp3.com, 151@comp2.com and 456@comp4.com observe item
10056732@comp1.com. Items 13456@comp5.com and 543@comp6.com observe item
13456@comp3.com. Therefore the information update message shown in the figure will be
sent to the corresponding product agents.
Implementing the “Observer” design pattern means that messages have to exist for adding
observers and removing them. Observers are also usually interested only in specific
information updates, so there may be several different add and remove messages for different
kinds of information updates.

5 Implementation

In OOP, objects live and evolve inside the working memory of the computer that the program
is running on. If the object data needs to be persistent, then it has to be written to a file or
stored into a database. The same is true for product agents; persistent data is usually stored in
databases. Therefore, product agents are a bridge between external access to product
information over Internet and access to information stored in company databases. Such
software components are usually named by the term middleware because they enable
otherwise isolated information systems to communicate with each other.
At Helsinki University of Technology we have developed a pilot product agent system that is
implemented according to the above specifications. The software is available at
“http://dialog.hut.fi” and is distributed under the terms of the GNU Lesser General Public
License. We will first study the implementation from a messaging perspective, and then
explain how “object containers” are implemented using database tables, followed by practical
experiences from industrial pilots.

5.1 Messaging protocols
The current implementation uses three different communication protocols and data formats
for message passing:

• SOAP messaging [W3C, 2000]. Programming language-independent protocol. Data
is transferred as text using the XML notation.

• HTML form [W3C, 1999]. Programming language-independent protocol. Data is
transferred as text using the HTML form format.

• Java RMI messaging [Sun Microsystems, 2002b]: Mainly used in development and in
intra-company installations. RMI is flexible and easy to use, but it may be
problematic for firewalls and version management when service interfaces change.

SOAP is a standard message exchange paradigm based on HTTP for exchanging information
between peers in a decentralized and distributed environment. SOAP should be suitable for
inter-company information exchange, but experiences from multi-company pilot installations
indicate that firewalls may have to be re-configured also for this protocol. Using HTML
forms avoids such firewall problems, but the underlying HTTP protocol may limit future
agent communication due to its strict request/response model.
In order to make the system as open as possible, a major challenge is to standardise these
communication protocols and messages so that any software producer could implement them
and have their applications communicate with others successfully. This is also one of the
main goals in the Savant middleware specifications under development at the Auto-ID center
[Auto-ID center, 2003b].

 6

5.2 Database tables as agent containers
The software components are programmed in Java, so the communication with databases is
performed using the JDBC (Java Database Connectivity) protocol [Sun Microsystems,
2002a]. For now, databases seem to be the only universal way to communicate with most
existing Enterprise Resource Planning (ERP) systems because ERP systems tend to have
proprietary Application Programming Interfaces. A more direct integration with ERP
systems could be necessary for some real-time applications with short reaction times, but for
most product lifecycle management applications it should not be necessary.
Database tables used by the product agents are created by the middleware component
as/when needed. “Composite” and “observer” use one database table each, where the needed
agent relations are stored as ID@URI pairs. Since the middleware components manage these
relations, both “composite” and “observer” functionality can be implemented without
modifying existing information systems.

5.3 Experiences from pilot installations
Two pilot installations have been performed in a multi-company environment. The first pilot
consisted in tracking project shipments in a global environment [ISI Industry Software,
2003]. Shipments were identified with RFID technology and tracked in several checkpoints.
Location update messages were sent using the RMI protocol, which in this case worked
despite multiple firewalls.
The second pilot consisted in tracking incoming and outgoing goods at warehouses of several
third-party contractors. Goods were identified with barcodes, while location update messages
were initially sent using SOAP. Due to firewall problems that occurred with some
contractors, messaging was later modified to use HTML forms. The conclusion of these pilot
installations is that the middleware concept presented here is operational. This also provides a
proof-of-concept for the technical aspects needed to implement “composite” and “observer”
patterns, even though they were not used in these pilots.

6 Conclusion

In this paper we have presented basic building blocks for using OOP concepts to manage
multi-supplier product information. These building blocks make it possible to create
distributed, agent-based information architectures that make information accessible in
controlled ways over the Internet. We have also presented how well known OOP practices
can be applied to information management of composite products and for propagating
information updates through the “observer” pattern.
The concepts have been implemented using several communication protocols and data
formats, which all have different advantages and challenges as shown by experiences from
two industrial pilot installations. Using different protocols does not have to be a problem
because the same product agent component can simultaneously support all communication
protocols and data formats used. However, establishing universally accepted standards
especially for message formats remains one of the biggest challenges of the future. We
believe that by keeping our system open, i.e. open-source and general-purpose, it is easy to
implement new functionality for applications not yet identified while allowing easy
integration of evolving standards.

Acknowledgement

This research has been supported mainly by Tekes, the National Technology Agency of
Finland. We also thank the companies who have contributed in the financing and validation
of the methods described here.

 7

 8

References
Aerts, A.T.M., Szirbik, N.B., Goossenaerts, J.B.M., (2002). A flexible, agent-based ICT architecture for virtual

enterprises. Computers in Industry, Vol. 49, No. 3. pp. 311-327.
Arnold, K., Gosling, J. (1996). The Java Programming Language. Addison-Wesley Publishing Company,

Reading, MA.
Auto-ID center (2003a). Auto-ID Object Name Service (ONS) 1.0. Available online (March 5th 2004):

http://www.epcglobalinc.org/standards_technology/Secure/v1.0/WD-ons-1.0-20030930.pdf
Auto-ID center (2003b). Auto-ID Savant Specification 1.0. Available online (March 5th 2004):

http://www.epcglobalinc.org/standards_technology/Secure/v1.0/WD-savant-1_0-20030911.doc
Berners-Lee, T., Fielding, R., Irvine, U.C., Masinter, L. (1998). Uniform Resource Identifiers (URI): Generic

Syntax. Available online (March 5th 2004): "http://www.ietf.org/rfc/rfc2396.txt"
Brock, D.L (2001). The Electronic Product Code (EPC) - A Naming Scheme for Physical Objects. MIT Auto-

ID Center White Paper, January 2001. Available online (December 13th, 2002):
http://www.autoidcenter.org/research/MIT-AUTOID-WH-002.pdf

Dahl, O.-J., Nygaard, K. (1966). SIMULA – an ALGOL-Based Simulation Language. Communications of the
ACM, Vol. 9, No. 9. pp. 671-678.

Främling, K. (2002). Tracking of material flow by an Internet-based product data management system (in
Finnish: Tavaravirran seuranta osana Internet-pohjaista tuotetiedon hallintaa), Tieke EDISTY magazine,
No. 1, 2002 (Tieke: Finnish Information Society Development Centre, Finland).

Främling, K., Holmström, J., Ala-Risku, T., Kärkkäinen, M. (2003). Product agents for handling information
about physical objects. Laboratory of Information Processing Science series B, TKO-B 153/03, Helsinki
University of Technology. Available online: http://www.cs.hut.fi/Publications/Reports/B153.pdf

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995). Design Patterns: elements of reusable object-oriented
software. Addison-Wesley Publishing Company, Reading, Massachusetts.

Goldberg, A., Robson, D. (1983). Smalltalk-80: The language and its Implementation. Addison-Wesley
Publishing Company, Reading, Massachusetts.

Huvio, E., Grönvall, J., Främling, K. (2002). Tracking and tracing parcels using a distributed computing
approach. In: SOLEM, Olav (ed.) Proceedings of the 14th Annual Conference for Nordic Researchers in
Logistics (NOFOMA'2002), Trondheim, Norway, 12-14 June 2002. pp. 29-43.

ISI Industry Software (2003). Consignment Tracking for Heavy Industry. Available online (March 23rd, 2004):
http://www.isiindustrysoftware.com/news/kvaerner.html

Kärkkäinen, M., Holmström, J., Främling, K., Artto, K. (2003). Intelligent products - a step towards a more
effective project delivery chain. Computers in Industry, Vol. 50, No. 2. pp. 141-151.

Kärkkäinen, M., Främling, K., Ala-Risku T. (2003). Integrating material and information flows using a
distributed peer-to-peer information system. In: Jagdev H.S., Wortmann J.C., Pels H.J. (eds.)
Collaborative Systems for Production Management, Kluwer Academic Publishers, Boston, USA. pp.
305-319.

Kärkkäinen, M., Ala-Risku, T., Främling, K. (2003). The product centric approach: a solution to supply
network information management problems? Computers in Industry, Vol. 52, No. 2. pp. 147-159.

Sun Microsystems (2002a). JDBC™ Data Access API. Available online (December 13th, 2002):
http://java.sun.com/products/jdbc/

Sun Microsystems (2002b). RMI Specification. Available online (December 13th, 2002):
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html

van Dorp, K.J., 2002, Tracking and tracing: a structure for development and contemporary practices. Logistics
Information Management, Vol. 15, No. 1. pp. 24-33.

W3C (1999). HTML 4.01 Specification. Available online (March 24th, 2004): http://www.w3.org/TR/html401/
W3C (2000). Simple Object Access Protocol (SOAP) 1.1. Available online (October 14th, 2003):

http://www.w3.org/TR/SOAP/

	Introduction
	Object Oriented Programming
	Product Agents
	Design patterns for communicating product agents
	Composite
	Observer

	Implementation
	Messaging protocols
	Database tables as agent containers
	Experiences from pilot installations

	Conclusion

