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Roles of Variables (RoV) are concepts that describe the behavior and usage of variables in
computer programs. RoV have originally been introduced to help novices learn program-
ming.

Algorithm Recognition (AR) is a subfield of program comprehension, where the problem
is to identify algorithms from the source code. AR covers recognizing different algorithms
that carry out different computational task, as well as different types of algorithms that
perform the same task. The main application of AR is in automatic assessment of students’
programs to verify that the program implements the required algorithm.

This thesis investigates the applicability and usefulness of RoV in AR. The idea is to an-
alyze different implementations of basic algorithms to see whether RoV appear in those
algorithms is such a way that they can be distinguished on this basis. In addition to RoV,
other distinctive characteristics that can be used in the recognition process are also identified
from the algorithms. These characteristics are related to language constructs and various
software metrics. Based on the results of these analyses, a method for AR is introduced and
a tool for automatic algorithm recognition is developed.

Two experiments on sorting algorithms are carried out to illustrate the feasibility of the
AR method. In the first experiment, sorting algorithms are recognized using a manually
constructed decision tree. The second experiment uses the C4.5 algorithm to construct the
decision tree. The results of the experiments (86% and 97.1% correctly recognized al-
gorithms respectively) show the applicability of RoV and the other characteristics in AR
problem. Moreover, the performance of the automatically constructed decision tree demon-
strates that machine learning techniques are also suitable for AR task.

Keywords: algorithm recognition, program comprehension, program understanding, roles
of variables, static program analysis
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Chapter 1

Introduction

Roles of variables (RoV) [45] explicate the ways in which variables are used in computer

programs and provide specific patterns how their values are updated. Roles are concepts

that associate variables with their behavior and purpose in a program. RoV are originally

introduced and applied to improve novices’ understanding of variables and their usage.

Algorithms, on the other hand, are well-defined computational procedures that take some

value as input and produces some value as output [11]. Algorithms consist of specific

instructions that should be performed in a specific order to achieve a specific goal. Based

on these definitions of RoV and algorithms, the starting point for the work presented in this

thesis was to investigate whether an algorithm can be recognized based on the variables

used in its implementation is source code. The idea is to make a connection between the

notion of specific patterns of variable usage (RoV) and the variables used to implement

specific instructions in some language (algorithms).

1.1 Motivation

To help teachers assess students’ work, specially in large courses, number of different au-

tomatic assessment tools are developed, including Boss [27], CourseMarker [23] and Web-

CAT [13]. These tools are capable of performing various functionalities, such as verifying

the correctness of programs, checking the program structure and implementation style, run

time efficiency, etc. (see the survey by Ala-Mutka [1] for an overview of this field). The ex-

isting tools, however, are not capable of identifying different types of algorithms that carry

out the same functionalities. For example, an automatic assessment tool verifies the type

and correctness of a sorting algorithm by executing it with a predefined set of numbers and

checking that the output is a set of the same numbers in the predefined and expected order.

But, the tool cannot easily and reliably distinguish between different sorting algorithms,

and thus cannot help in grading the task where students are asked to implement a particular

type of sorting algorithm, such as Quicksort (A simple approach to discover the used algo-

1



CHAPTER 1. INTRODUCTION 2

rithm by these kind of tools would be to check some intermediate states, but this is clumsy

and unreliable as students may very well implement the basic algorithm in slightly different

ways, for example, by taking the pivot item from the left or right end in Quicksort). This

is the main motivation of the work presented in this thesis; developing a method that can

automatically recognize different types of algorithms.

Algorithm Recognition (AR) can be applied to many other problems as well. For ex-

ample, all the following problems share the common task of recognizing algorithms/parts

of source code and thus can apply AR methods: source code optimization [34] (tuning of

existing algorithms or replacing them with more efficient ones), clone recognition [3, 32]

(recognizing and removing clones as an essential part of code refactoring), software main-

tenance (especially maintaining large legacy code with insufficient or non-existent docu-

mentation), and program translation via abstraction and reimplementation [56] (a source to

source translation approach, which involves the abstract understanding of what the source

program does).

1.2 Research questions

Our main goal is to investigate the usefulness of RoV in recognizing basic algorithms. We

want to discover how distinctive factors RoV are in identifying algorithmic patterns and

how valuable they are in automatic AR process. Thus, our main research question is the

following:

1. How applicable and useful RoV are in recognizing basic algorithms?

By basic algorithm we mean the algorithms that are commonly introduced in data struc-

ture and algorithms courses at universities as solutions to the classical algorithmic problems,

such as sorting algorithms, searching algorithms, graph algorithms, etc.

Although they may prove to be useful, it seems unlikely that RoV alone are able to dis-

tinguish between basic algorithms reliably and accurately enough (e.g., with at least 80%

of correctly identified algorithms), due to the following reasons. First, algorithms that solve

different problems or different types of algorithms that solve the same problem may use

variables that appear in the same roles. For example, Insertion sort and Bubble sort algo-

rithms use variables that plays exactly the same roles (e.g., steppers as loop counters and

temporary in swap operation. See Table 4.1 for definition of RoV). In these cases, RoV

cannot differentiate between the algorithms. Second, with regard to the RoV, some algo-

rithms may have different implementations. For example, while most implementation of

Mergesort algorithm do not use any variable playing temporary role (because of merging

operation), however, this role appears in some implementations of Mergesort algorithm.

RoV are not distinguishing enough in these cases neither. Finally, RoV are cognitive con-

cepts [5, 17]. Two observers may assign different roles to a variable appearing in the same
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context, or more than one role may be considered appropriate for the same variable. How-

ever, an automatic role detection tool deals with roles as technical concepts, not cognitive.

This implies that automatic detection of RoV in a way that is in accordance with those as-

signed by a human during initial manual data analysis cannot always be guaranteed. This

has also a weakening effect on RoV as distinguishing factors.

To tackle this problem, in addition to RoV, we have to use other factors in AR as well.

This leads us to the second research question:

2. What set of algorithmic characteristics are useful in AR process?

We will analyze basic algorithms to find a set of characteristics that are distinguishing

enough to be used in AR. We then use these characteristics as the complementary set of

distinctive factors along with RoV. We will also evaluate the value of these characteristics

from AR point on view. As the analysis is extended to cover more and more fields of basic

algorithms, this set of characteristics may be subject to change.

One way to evaluate the value of RoV and other characteristics of algorithms in AR is

using machine learning techniques. Thus, the final research question is:

3. How suitable machine learning techniques are in AR problem?

We will deal with this question by using the C4.5 algorithm for constructing a decision

tree that can guide the AR process. We will also investigate the applicability of the C4.5

algorithm by evaluating the performance of the resulted decision tree.

1.3 Structure of the thesis

This thesis is structured as follows. Chapter 2 discusses Program Comprehension (PC) and

AR as research fields, as well as their relationship. The challenges of AR are also pre-

sented in the chapter. Chapter 3 presents an overview on the previous work on PC and

briefly discusses the related research fields. Chapter 4 gives a definition of RoV along with

an example and highlights their connection to PC. Chapter 5 explains decision tree classi-

fiers. The AR method is presented in Chapter 6, followed by two experiments discussed in

Chapter 7 along with the results. Finally, Chapter 8 discusses related issues, presents some

conclusions that can be drawn from the work mapping them into the research question ex-

plained above and gives some directions for future work.



Chapter 2

Program Comprehension and
Algorithm Recognition

In this chapter, we discuss Program Comprehension (PC) and Algorithm Recognition (AR)

and explain their relationship.

2.1 Program comprehension

PC is a concept that consists of all activities, aspects, methods, and research fields and

techniques that can be linked to the process of understanding programs. Activities relate

to different actions that can be utilized to understand a program, such as reading the code,

executing the program, debugging, investigating the documentation, etc. Aspects pertain to

how PC is carried out, by a human or automatically. Methods include dynamic, static or

hybrid manners of performing PC and finally research fields and techniques cover those re-

search lines and methodologies that facilitate PC, such as reverse engineering and software

visualization.

We discuss different methods and aspects of PC in the following. A discussion on PC

research fields and techniques is presented in Chapter 3, where an overview of related work

is given. As PC activities are somehow self-evident and non-relevant, we leave them out of

the discussion.

2.1.1 Program comprehension methods

There are mainly two types of analyses used in PC task: dynamic analysis and static anal-

ysis. In dynamic analysis, the program is executed by some input and the program output

is used to understand the program. In static analysis, the program is not executed, but the

code is investigated in order to extract such information that can help understanding the

program. Dynamic analysis is commonly used in automatic assessment tools to check the

4



CHAPTER 2. PROGRAM COMPREHENSION AND ALGORITHM RECOGNITION 5

correctness of students’ works, whereas most PC research fields utilize static analysis (see

Chapter 3). It is also possible to use combination of the two analyses in PC tasks.

Dynamic analysis provide exact information about the code and thus is very important

from PC point of view. However, the provided information is limited by the input, as the

input determines which path of the code to execute. Static analysis provide more com-

prehensive overview of the code an makes it possible to investigate the code from various

points of views.

2.1.2 Program comprehension aspects

PC research field can be divided into human PC (HPC) and automated PC (APC).

Human program comprehension

The focus of HPC is to discover how humans understand programs. HPC research deals

with PC from psychology of programming point of view and tries to answer to the questions

related to the process of understanding programs, including:

1. What are those strategies used by humans when comprehending programs? Which

ones are the most useful?

2. What kind of cognitive structures humans build/have when comprehending programs?

3. What kind of external representations are more helpful in the process of understand-

ing?

PC is a process in which a human builds his or her own mental representation of the

program. Understanding programs is a process that involves different elements as shown

in Figure 2.1 [49]. External representation means how the target program is represented to

the programmer. Assimilation process and cognitive structure are the two elements internal

to the programmer. Cognitive structures include the programmer’s knowledge base (his/her

prior knowledge and the domain knowledge related to the target program) and the mental

representation he/she has built of the target program. Assimilation process is the process

of building a mental representation of the target program using the knowledge base and

the given representation of the program. In assimilation process, top-down, bottom-up or

integrated strategies of building mental representation may be used.

In top-down strategy, the assimilation process starts by utilizing the knowledge about

the domain of the program and proceeds to a more detailed levels in the code to verify the

hypothesis formed based upon the domain. In bottom-up strategy, the assimilation process

starts at a lower level of abstractions with individual code statements and proceeds to higher

level of abstractions by grouping code statements. The final mental representation of the tar-

get program is constructed by repeating this process of chunking lower levels successively
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Figure 2.1: Key elements of program comprehension models [49]

to higher levels. In integrated strategy the programmer switches between the top-down and

bottom-up models whenever he/she founds it necessary in order to build his/her mental rep-

resentation effectively. In PC literature, integrated strategy is also referred to as combined,

hybrid, opportunistic, as-needed or mixed strategy, sometimes interchangeably and some-

times with slightly different meaning (whose detailed discussion is out of the scope of this

thesis).

Comprehending a program, regardless of the strategy recommended or suggested by

PC models, involves elements that guide the comprehender and help him or her in the com-

prehension task. For example, in Soloway and Ehrlich’s model [50]) model, critical lines

are statements that carry important information about program plans and can be consid-

ered as the key representatives of the plans that help experts to recognize them. As another

example, beacons are statements that indicate the existence of a particular structure or op-

eration in the code. It has been shown that beacons play important roles in studying and

understanding programs by experts [57]. Beacons are also described as providing the link

between the source code and the process of verifying the hypotheses driven from the source

code [7]. We will discuss these issues in a more detail in Chapter 4.

HPC has been studied for decades and several PC models have been suggested. The

differences between PC models, as well as the difference between how they define novices

and experts, are mainly related to the way they describe the cognitive structure and the

assimilation process. We will explain some of the most popular PC models in Chapter 3
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and discuss the differences between these models from various perspectives.

Automated program comprehension

APC is the aspect of PC that aims to automate the PC process by developing appropriate

tools. The objective is, for example, to help humans in PC process by reducing the effort of

reading the code.

APC research is closely related to HPC research. It uses the results of HPC research

to develop more efficient tools that can assist programmers and maintainers in PC task. In

her survey on theories, methods and tools in PC, Storey [52] notices that the characteristics

that influence cognitive strategies used by programmers, influence the requirements for

supporting tools as well. As an example, top-down and bottom-up strategies in HPC models

are reflected in a supporting tool so that the tool should support “browsing from high-level

abstractions or concepts to lower level details, taking advantage of beacons in the code;

bottom-up comprehension requires following control-flow and data-flow links” [52].

Based on their functionality, PC tools can be divided into one of the following cate-

gories: extraction, analysis and presentation. Extraction tools perform the tasks related to

parsing and data gathering. Analysis tools carry out static and/or dynamic analyses to fa-

cilitate different activities including clustering, concept assignment, feature identification,

transformations, domain analysis, slicing and metrics calculations. Presentation tools com-

prise code editors, browsers, hypertext, and visualizations. Some tools may have multiple

functionalities and be capable of carrying out different tasks from each category [52].

The knowledge extracted by PC tools from source code can be used for different pur-

poses including restructuring programs, teaching novices, generating documentation from

the code and finding the location of those parts of the code that can be reused [41].

2.2 Algorithm recognition

The task in AR is to identify algorithms from source code. Recognizing an algorithm

involves discovering its functionality and comprehending the corresponding program code,

thus AR can be regarded as a subfield of PC. The problem in AR is not only to identify and

differentiate between different algorithms with different functionalities, but also between

different algorithms that perform the same functionality. As an example, in addition to

identifying and differentiating between sorting and searching algorithms, different sorting

algorithms should also be identified and distinguished. Like PC tools, AR tools can also

be applied in various problems, such as code optimization, software engineering activities.

examining and grading students’ work, and so on.

AR is a non-trivial task. There exist different algorithms that perform the same com-

putational task, such as sorting an array or finding the minimum spanning tree of a graph.
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For example, the sorting problem can be solved by using Bubble sort, but also by Quick-

sort, Mergesort or Insertion sort, among many others. However, the problem of recognizing

the applied algorithm has several complications. First, while essentially being the same

algorithm, Quicksort, as an example, can be implemented in several considerably different

ways. Each implementation, however, matches the same basic idea (partition of an array

of values followed by the recursive execution of the algorithm for both partitions), but they

differ in lower level details (such as partitioning, pivot item selection method, and so forth).

Moreover, each of these variants can be coded in several different ways, for instance, using

different loops, initializations, conditional expressions, and so on.

In addition to aforementioned variations that make AR a difficult and challenging task,

there are also other issues that contribute to its complexity: in real-world programs, algo-

rithms are not “pure algorithm code” as in textbook examples. They include calls to other

functions, processing of application data and other activities related to the domain, which

greatly increases the complexity of the recognition process. The implementation may in-

clude calls to other methods or the other functionalities may be inlined within the code

[P2].

With respect to computational complexity, AR can be regarded to be comparable to

many undecidable problems. As an example, it can be considered as similar to the problem

of deciding the equivalency of syntactical definitions of programming languages, which is

also known as the equivalency problem of context-free grammars, and as described in [22],

is proven undecidable by Bar-Hillel et al. [2]. This problem is undecidable, because there

exists no algorithm which can show in a finite amount of time, whether two given input

set of syntactic rules are equivalent, that is, whether they define the same language. On

the other hand, the problem of AR can be regarded to be a problem of deciding whether

two given algorithms are equivalent, that is, whether they perform the same task or solve

the same problem. In order to be able to decide whether two algorithms solve the same

problem, the functionality of those algorithms must be understood first. This means that

being able to tell whether two algorithms solve the same problem can be regarded equal

to being able to tell what problem those two algorithms solve. Thus, AR and syntactical

equivalence problem can be regarded to belong to the same category, and this implies that

AR problem also can be considered as an undecidable problem. As we will describe in

Chapter 6 when presenting the method, we approach the problem by converting it into

the problem of extracting the characteristics of algorithms and examining algorithms as

characteristic vectors. Furthermore, we limit the scope of our work to include a particular

group of algorithms. In addition, we are not looking for a perfect matching, but aim at

developing a method that provides statistically reasonable matching results.



Chapter 3

Related Work

PC research field has been mainly motivated by finding effective solutions to be used in

software engineering tasks and by developing automated tools to facilitate understanding

programs [52]. Figure 3.1 shows the research fields that are connected with PC. In the fig-

ure, the octagon with gray background depicts PC as a concept and the rounded rectangles

with white background illustrates research fields that draw on PC literature or are otherwise

related to PC.

In this section, we present a brief overview on the previous research on the two aspects

of PC, HPC and APC, followed by a discussion on the related research fields depicted in

Figure 3.1. We also analyze the relevance of each research field to the problem of AR.

3.1 Human program comprehension research

The goal of HPC research is to discover how a human understands program and what lies

behind good and poor performance in the understanding task. HPC research is not an

automatic process, and thus it is not directly relevant to AR. However, findings of HPC

models can well be used in developing AR tools, as has been the case in APC tools. As also

noted by Gerdt [16], there are several similar concepts, techniques and strategies between

HPC and knowledge-based APC (an APC technique that will be discussed in Section 3.2).

As an example, knowledge base of an APC tool comprises the prior knowledge of the

system upon which the comprehension process is based. This corresponds to the knowledge

base of a human in the comprehension process (see Figure 2.1). Likewise, the assimilation

process presented in HPC models appears in APC tools as different techniques of matching

plans from the target program against the plans in the database. Since HPC research line is

started before APC, it can be concluded that APC draws on HPC, although this relationship

is not explicitly highlighted in the APC literature.

In the study centered on PC literature and the inferences that can be made from PC stud-

ies and models for computing education, a vast body of PC literature was reviewed [49].

9
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Figure 3.1: Different research fields that are connected to PC. Arrows illustrate the interre-
lationship between the fileds and should be read as “drawing on” or being somehow “related
to” (from [P2])

Figure 3.2 shows all the considered PC models, from which the models with a gray back-

ground were selected for detailed analysis. These models were selected with the criterion

that they represent main PC models and have had significant individual influence on the

subsequent related research. We present a brief description of these models in the following

(for more detailed discussion see [49]). In addition to a short overview for each model, the

following description includes the elements shown in Figure 2.1, that is, external represen-

tation, assimilation process and cognitive structure. The selected models are presented in

chronological order, starting from the earliest one.

Soloway and Ehrlich’s model ([50]) is one of the earliest models of PC which is based

on text comprehension research. In this model, program consist of plans: “generic program

fragments that represent stereotypic action sequences in programming” ([50]). To form

plans, rules of programming discourse are used, which are programming conventions. If

typical plans and proper rules of programming discourse are used to write a program, the

resulted program is readable and understandable (which the authors call a plan-like pro-

gram). Using bad programming conventions and atypical plans result in a program that is

difficult to comprehend (correspondingly called an unplan-like program). The model uses

program code as external representation. To comprehend a program, a programmer reads

the code and understands or assumes the plans used in the program. This is followed by a
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Figure 3.2: Most representative and individually influential PC models [49]. The mod-
els with a gray background are selected for detailed analysis. Arrows indicate direct an-
tecedence or strong influence. The model of von Mayrhauser and Vans integrates the mod-
els surrounded by the dotted area
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more detailed examination of the code, where the programmer verifies the assumed plans.

Rules of programming discourse (e.g., using proper variable names), play an important role

in this stage. The programmer also utilizes critical lines, which play the role of beacons in

the comprehension process. Thus, the programmer’s knowledge base consists of program-

ming plans and rules of programming discourse. Based on an empirical study, Soloway and

Ehrlich show that the difference between experts and novices is that experts have developed

a more complete knowledge base, which is why they understand plan-like programs much

more quickly and correctly than novices. When comprehending unplan-like programs, ex-

perts perform almost as poorly as novices. This is because unplan-like programs do not use

typical plans and proper rules of programming discourse, and thus result in confusion and

mislead experts when they try to recognize plans and verify their hypotheses.

Letovsky [31] proposed a PC model in which the assimilation process is opportunistic,

that is, the programmer uses both top-down and bottom-up process in the comprehension

task to achieve the best results. In this model, the comprehension is based on knowledge

base. To comprehend programs, the programmer uses his/her knowledge base which con-

sist of his/her background knowledge and expertise. During the comprehension task, the

programmer builds a mental model which is his/her understanding of the target program so

far, and which evolves as the comprehension proceeds. External representation comprises

source code and program documentation. The empirical part of the Letovsky’s study was

carried out using six professional programmers with varying work experience. Thus, the

author does not explicitly highlight the difference between experts and novices. However,

it is evident that a comprehensive knowledge base is necessary to become an expert.

In Pennington’s model [39, 40], which is a bottom-up model based on text comprehen-

sion, the mental model comprises a program model and a domain model (situation model).

The program model is text based and comes from focusing on program’s text structure and

objects (control flow, etc.), while the domain model relates objects in the problem model to

source-language entities, answering the question why the target program does what it does.

These models are built sequentially, program model being built first. Cross-referencing

combines the two model and links them and thus results in the best outcome. Programmers

who construct either a program model or a domain model (i.e., novices) do not perform

as well as experts who use cross-referencing. The external representations of Pennington’s

study were program code and some documentation about the domain. The prior knowledge

of programmers consist of text structure knowledge and plan knowledge.

Fix, Wiedenbeck and Scholz’s model [15] concentrates on the mental representation

of computer programs. This model uses the aforementioned models of Soloway and Ehrlich

[50], Letovsky [31] and Pennington [39, 40] to present the following five abstract features

that distinguish novices form experts: hierarchical structure (decomposition of goals and

sub-goals based upon Letovsky’s model [31]), explicit mapping of code to program goals
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(linking high-level goals to their code representation), foundation on recognition of recur-

ring patterns (plan knowledge as introduced by Soloway and Ehrlich [50]), connection of

knowledge (understanding how different parts of the program interact with each other), and

grounding in the program text (ability to localize structures and operations in the code).

The results of the experience conducted by the authors show that the mental representation

that experts build from the code includes all the abstract features, while the mental rep-

resentation of novices (although may appear to contain poorly developed elements of the

features) does not. The external representation used in the study is program code presented

on paper. The assimilation process consists of extracting information from the code based

on the knowledge base, for example, knowledge about plans and the hierarchical structure

of programs. Reading strategies can also influence the assimilation process.

Von Mayrhauser and Vans’ model [54, 55] is an integrated model developed based

upon the prior models of Soloway and Ehrlich [50], Letovsky [31], Pennington [39, 40] and

others. The model includes four major components: “the top-down, situation and program

models and the knowledge base. The first three reflect comprehension processes; the fourth

is needed to successfully build the other three” [54]. According to the authors, program-

mers do not use only top-down or bottom-up comprehension strategy, but rather apply all

the three model components, that is, program, situation and top-down (domain) models, and

frequently switch between them to build their understanding. These components are applied

at different levels of abstraction depending on code size. These results were found by con-

ducting an experiment where programmers tried to understand a large scale software system

using the program code as external representation. The authors also note that understand-

ing of large scale programs requires significant domain information. The von Mayrhauser

and Vans model is developed based on the performance of professional programmers in

comprehension task, hence the performance of novices is not expressed explicitly. While

the professional programmers used all the program, situation and top-down models and

effectively switched between them to achieve the best understanding of the code, novices

probably focus on one model and use less sophisticated assimilation process.

Burkhardt , Détienne and Wiedenbeck’s model [8] is based on Pennington’s model

[39, 40] with consideration of object-oriented program features such as objects, relations

between objects, message passing, larger program structures, etc. The authors studied how

programmer expertise, nature of the task and development of comprehension over time

affect PC. This effect was studied using two tasks: a read-to-recall task (documenting a

program) and a read-to-reuse task (modifying a program). In the study, the external presen-

tation of the program consisted of source code both in hard copy and on computer screen

with some documentation. Like in Pennington’s model, the assimilation process consisted

of extracting information and building program and situation models. The cognitive struc-

tures of the model are also similar to those in Pennington’s model, with additional elements
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related to object-oriented programming taken into account. According to the authors, the

difference between performance of novices and experts depends on the given task. In the

read-to-recal task, novices focused on the program model more than the situation model,

whereas in the read-to-reuse task, novices were able to develop a situation model over

time. Therefore, with the read-to-reuse task the difference between experts and novices are

smaller than with the read-to-recall task.

3.2 Automated program comprehension research

APC deals with understanding programs automatically and without reading the source code.

Most APC techniques are knowledge-based, where the basic idea is to store stereotypical

pieces of code – which are often called plans, but also chunks, clichés and idioms in different

studies with slightly different meaning – in a database and match the target program against

these pieces. Since the functionality of the plans in the database are known, the functionality

of the target program can be discovered if a match is found between the target program and

the plans.

As with the assimilation process in HPC, there are three main techniques to perform

matching: top-down, bottom-up, hybrid technique. Top-down techniques (see e.g., [24]) use

the goal of the program to select the right plans from the knowledge base. This speeds up the

process of selecting the plans and makes the matching more effective. However, the main

disadvantage of these techniques is that they need the specification of the target program,

which is not necessarily available in real life, especially in case of legacy systems. Most

knowledge-based APC systems work bottom-up (see for example [21]), where the matching

starts at the low-level of abstraction, with statements and small plans, and proceeds toward

the higher-level of abstraction to discover the goal of the target program. The main concern

with bottom-up techniques is efficiency. As the statement can be part of several different

plans and the same plan can be part of different bigger plans, the process of matching

statements and plans can get ineffective. This is especially true when the target program is

a real life program with thousands of lines of code. Hybrid techniques use the combination

of the two techniques. For example, in Quilici approach [41], plans are first recognized in

a bottom-up manner. After this, general plans are suggested by the system to be matched

against the program in a top-down manner. These general plans are proposed by using a

well-organized plan library, where each plan is identified by an index, specialization and

implication links to the other plans. By using the indexing facility, the system is able to

quickly associate a piece of the source code with a plan in the knowledge base.

Among others, fuzzy reasoning technique [9] was introduced to improve the perfor-

mance of the knowledge-based APC techniques and to address the problem of scalability

and inefficiency related to them. Instead of matching all the statements and plans of the tar-
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get program against the plans in the knowledge base, fuzzy reasoning technique first selects

a set of more promising pieces of code, and performs the costly more detailed matching

only between this set and the corresponding plans.

3.3 Reverse engineering techniques

Reverse engineering techniques are used to understand a system in order to recover its high-

level design plans, create high-level documentation for it, rebuild it, extend its functionality,

fix its faults, enhance its functions and so forth. By extracting the desired information out of

complex systems, reverse engineering techniques provide software maintainers a way to un-

derstand complex systems, thus making maintenance tasks easier. Understanding a program

in this sense refers to extracting information about the structure of the program, including

control and data flow and data structures, rather than understanding its functionality. Dif-

ferent reports that can be generated by carrying out these analyses indeed help maintainers

to gain a better understanding of a program enabling them to modify the program in a much

more efficient way, but do not provide them with direct and concise information about what

the program does or what algorithm is in question. Reverse engineering techniques have

been criticized for the fact that they are not able to perform the task of PC and deriving ab-

stract specifications from source code automatically, but they rather generate documentation

that can help humans to complete these tasks [42].

Since providing abstract specifications and creating documentation from source code

are the main outcomes of reverse engineering techniques, these techniques can be regarded

as analysis methods of system structure rather than understanding its functionality. Thus

their relevance to our work is not high.

3.4 Program similarity evaluation techniques

The problem in program similarity evaluation research is to find the degree of similarity be-

tween computer programs. The main motivation for these studies and the main application

for these tools have been detecting plagiarism in universities and preventing students from

copying each other’s works.

Based on how programs are analyzed, these techniques can be divided into two cate-

gories: attribute-counting techniques (see, for example, [19, 26]) and structure-based tech-

niques (see, e.g., [35, 58]). Attribute-counting techniques use distinguishing characteristics

of the subject program to find the similarity between the two programs, whereas structure-

based techniques focus on examining the structure of the code. Attribute-counting methods

have been criticized as being sensitive to even textual modification of the code, whereas

structure-based methods are generally regarded more tolerant to modifications imposed by
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students to make two programs look different [35]. Structure-based methods can be further

divided into string matching based systems and tree matching based systems.

Since the focus of the program similarity evaluation techniques is on the style and struc-

ture of a program rather than discovering its functionality, these techniques are not highly

relevant to AR as such. However, as we will discuss in Chapter 6 when presenting our

method, we used software metrics that are widely used in these techniques.

3.5 Others research fields

There are several other research methods related to HPC and APC.

Clone Detection (CD) techniques are used for locating clones in source code. Clone

means the duplication of some piece of a source code, which is either intentionally copied

by a programmer from somewhere else in the same software to be reused directly or with

some small modifications, or is created by him or her without awareness of the existence

of the same code elsewhere in the software. Since clones make the maintenance task more

difficult, CD tools are valuable in software engineering tasks.

CD techniques are close to our research, as our purpose is to look for similar patterns of

algorithmic code in the source code. However, there is an essential difference between AR

and CD: in CD, the goal is to find similar or almost similar pieces of code within software

and therefore, all kinds of identifiers that can provide any information in the process can

be utilized. These identifiers may include comments, relation between the code and other

documents, etc. For example, comments may often be cloned along with the piece of code

that programmers copy and paste. However, our purpose, on the other hand, is to identify

implementations of some predefined set of algorithms for human inspection that would

support understanding the purpose of the code. We are not looking for the similarities such

as comments an alike within the program, and thus, we cannot make use of them in the

same way.

Traditionally, CD techniques are based on structural analyses such as structural organi-

zation, control and data flow as well as abstract syntax tree analysis (see for example [4]).

Marcus and Maletic’s technique [32] detect high-level clones by identifying the implemen-

tation of similar high-level concepts. Latent Semantic Indexing (LSI) is used as the infor-

mation retrieval technique to statically analyze software and to identify semantic similarity

(similar words). To detect clones, the method examines various files and documentations,

as well as comments and identifiers.

Basit and Jarzabek [3] have developed a tool for detecting clones in a file (simple clone)

and clones in different files (structural clones or design-level similarities). To detect simple

clones, first the code is tokenized and then similarities in the token sequence are evaluated.

After this, data mining techniques are used to find structural clones. This is carried out by
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investigating the pattern of co-occurring simple clones in different files. The authors claim

that the technique is capable of scaling up to handle big systems.

Software Visualization(SV) is a common name for techniques that help humans to bet-

ter understand different aspects of software by using graphics and animation. SV tools are

used in various purposes including education, software engineering tasks, etc. SV tools fa-

cilitate the process of PC by visualizing software at different level of abstraction. They also

can contribute to PC by, for example, supporting different assimilation processes presented

in PC models, namely top-down, bottom-up and integrated strategies [12]. Many studies

in SV research field that aim to help novices draw on the PC literature (see, e.g., [37] and

[48]). Although SV is not highly relevant to AR problem, SV techniques can be utilized

to highlight the recognized algorithm from the source code. This further helps the user to

locate the recognized algorithm in the source code and to understand its relation to the other

parts of the code.

As an independent field, Roles of variables (RoV) can also be categorized as highly

relevant to AR and HPC. With regard to AR, as we will describe in Chapter 6, RoV can be

used as distinguishing factors to recognize algorithms. Concerning HPC, studies on using

roles of variables in elementary programming courses have shown that roles of variables

provide a conceptual framework for novices that helps them comprehend programs better

[30]. Utilizing roles in teaching also help students learn strategies related to deep pro-

gram structures (“knowledge concerning data flow and function of the program reflect deep

knowledge which is an indication of a better understanding of the code” [30]) as opposed

to surface knowledge (“program knowledge concerning operations and control structures

reflect surface knowledge, i.e., knowledge that is readily available by looking at a program”

[30]). We will discuss RoV and their relation to PC in more detail in the next chapter.

Several other methods are also introduced for automatic or semi-automatic PC including

Program understanding based on constraints satisfaction [59, 60], Task oriented program

understanding [14], Data-centered program understanding [25], and Understanding source

code evolution [38].



Chapter 4

Roles of Variables and Program
Comprehension

Roles of Variables (RoV) constitute an essential part of our method in AR. In this chapter,

we first discuss RoV, the concept, history and original application. In the second section,

we explain the relationship between RoV and PC and outline how RoV can be utilized as

an element of PC.

4.1 Roles of variables

The concept of RoV was first introduced by Sajaniemi [45]. The idea behind them is that

each variable used in a program plays a particular role that is related to the way it is used.

RoV are specific patterns how variables are used in source code and how their values are

updated. For example, a variable that is used for storing a value in a program for a short

period of time can be assigned a temporary role. As Sajaniemi argues, RoV are part of

programming knowledge that have remained tacit. Experts and experienced programmers

have always been aware of existing variable roles and have used them, although the concept

has never been articulated. Giving an explicit meaning to the concept can make it a valuable

tool that can be used in teaching programming to novices by showing the different ways in

which variables can be used in a program. Although RoV were originally introduced to help

students learn programming, the concept can offer an effective and unique tool to analyze

a program with different purposes. In this work, we have extended the application of RoV

by applying them in the problem of algorithm recognition.

Roles are cognitive concepts [5, 17], implying that human inspectors may have a dif-

ferent interpretation of the role of a single variable. However, as Gerdt [18] and Bishop

and Johnson [6] describe in their work, roles can be analyzed automatically using data flow

analysis and machine learning techniques.

As reported in [45], Sajaniemi identified nine roles that cover 99% of all variables

18
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Role Description
Stepper A variable that systematically goes through a succession of values,

for example, values stored in an array.
Temporary A variable that holds a value for a short period of time appears in

temporary role.
Most-wanted holder A variable that holds a most desirable value that is found so far.
Most-recent holder A variable that holds the latest value from a set of values that is

being gone through, and a variable that holds the latest input value.
Fixed value A variable that keeps its value throughout the program. The fixed

value role can be thought as a final variable in Java which is
immutable once it has been assigned a value.

One-way flag A variable that can have only two values and once its value has
been changed, it cannot get its previous value back again.

Follower A variable that always gets its value from another variable, that is,
its new values are determined by the old values of another variable.

Gatherer A variable that collects the values of other variables. A typical
example is a variable that holds the sum of other variables in a
loop, and thus its value changes after each execution of the loop.

Organizer A data structure holding values that can be rearranged is a typical
example of the organizer role. For example, an array to be sorted
in sorting algorithms has an organizer role.

Container A data structure into which elements can be added or from which
elements can be removed. For example, all Java data structures
that implement Collection interface.

Walker Can be assigned to a variable that is used for going through or
traversing a data structure.

Table 4.1: The roles of variables and their descriptions (from [P1])

used in 109 novice-level procedural programs. Currently, based on a study on applying the

roles in object-oriented, procedural and functional programming [46], a total of 11 roles

are recognized. These roles are presented in Table 4.1 (see the RoV Home Page (http:

//www.cs.joensuu.fi/˜saja/var_roles/) for a more comprehensive information on

roles). Note that the three last roles shown in Table 4.1 are related to data structures.

4.1.1 An example

Figure 4.1 shows a typical implementation of Selection sort in Java. There are five variables

in the algorithm with the following roles. A loop counter, that is, a variable of integer type

used to control the iterations of a loop is a typical example of a stepper. In the figure,

variables i and j have the stepper roles. Variable min stores the position of the smallest

element found so far from the array and thus, has the most-wanted holder role. A typical

example of the temporary role is a variable used in a swap operation. Variable temp in the

http://www.cs.joensuu.fi/~saja/var_roles/
http://www.cs.joensuu.fi/~saja/var_roles/
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// i and j: steppers, min: most-wanted holder 

// temp: temporary, numbers: organizer 

01 for (int i = 0; i < numbers.length-1; i++){ 

02  int min = i; 

03  for (int j = i+1; j < numbers.length; j++){ 

04   if (numbers[j] < numbers[min]){ 

05    min = j; 

06   } 

07  } 

08  int temp = numbers[min]; 

09  numbers[min] = numbers[i]; 

10  numbers[i] = temp; 

11 } 

Figure 4.1: An example of stepper, temporary, organizer and most-wanted holder roles in a
Selection sort algorithm (from [P1])

figure demonstrates the temporary role. Finally, data structure numbers is an array that has

the organizer role.

4.2 The link between RoV and PC

RoV were introduced as a concept to help novices learn programming. Although some work

on RoV has been linked to HPC research (e.g., Kuittinen and Sajaniemi’s study [30] draws

on Pennington’s work [39]), no study about further explicit connection between the two, nor

further application of RoV to HPC has been reported. Automatic role detection tools, such

as [6], [16] and [18] can correspondingly be considered as related to APC research field. In

this section, we first define beacons, which are important elements of PC models that help

programmers in comprehension task. We then discuss how RoV can serve as beacons in

PC.

PC models emphasize the role of beacons in PC. Beacons are parts of codes that help

programmers to identify plans while reading the code. Wiedenbeck describes beacons as

signs of presence of particular structure or operation in source code [57]. Brooks defines

beacons as the link between the process of hypothesis verification and the source code [7].

As an example, the existence of a swap operation specially inside a pair of loops indicates

sorting of array elements [7]. Soloway and Ehrlich [50]) emphasize the role of critical lines

in verifying the hypothesis about plans. In the following, we explain critical lines and show

that they are conceptually identical to beacons.

Critical lines are those lines of the programs that “carry the information that makes

the programs plan-like or not” [50] (a plan-like program is “one that uses only typical

programming plans and whose plans are composed so as to be consistent with rules of

programming discourse” [50]). Figure 4.2 shows the two program in Algol language which



CHAPTER 4. ROLES OF VARIABLES AND PROGRAM COMPREHENSION 21

Soloway and Ehrlich used in their study on PC [50]. The two programs are essentially

identical except for lines 5 and 9. The Alpha program (on the left side of the figure) is a

maximum search plan and the Beta program (on the right side) is a minimum search plan. In

the study, these programs were shown to expert programmers (41 subjects) three times (each

time for 20 seconds). On the first trial, the programmers were asked to recall the program

lines verbatim as much as they could. On the second and third trial, the programmers were

asked to correct or complete their recall of the previous trial. The corrections/additions were

made using different color pencil each time which made it possible to track the changes

carried out on each trail. The programmers were expected to recall the Alpha program

earlier, since it is a plan-like program. In the Beta program, the variable name (max) does

not agree with the search function, which is a minimum search function. Since, the variable

name does not reflect its function, the program violates the discourse rule of using proper

variables names and thus is considered as an unplan-like program. In their study, Soloway

and Ehrlich focused on lines 5 and 9, as these lines are critical lines of these programs. The

results showed that the programmers recalled significantly more critical lines earlier from

the Alpha program than the Beta program. The conclusion was that plan-like programs help

programmers in PC task and that critical lines are important in the process.

Figure 4.2: Plan-like and unplan-like programs used in Soloway and Ehrlich PC study [50]

Roughly speaking, line 9 in figure 4.2 and lines 4 and 5 in Figure 4.1 are identical.

They both make a comparison between the currently encountered number and the min-

imum/maximum value of an array of numbers encountered so far. They then store the

value of the current number into the variable holding the minimum/maximum value, if it is

smaller/larger than the current value of that variable. As illustrated in Figure 4.1, variable

min in line 5 has the most-wanted holder role. Therefore, since line 9 in figure 4.2 is a

critical line, most-wanted holder role can also be considered as a critical line (or a beacon)

in a search plan. In addition, as discussed above, Brooks [7] regards the presence of a swap

operation as a beacon in sorting functions. Swap operations typically include temporary

role and thus temporary role can be regarded as part of the beacon in the example of Fig-
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ure 4.1. As we will discuss in this thesis, RoV constitute an essential part of our method

in automatic AR. Specifically, presence of the most-wanted holder role and absence of the

temporary role provide strong indicators (i.e., beacons) in recognizing Selection sort and

Mergesort.

As discussed in the previous chapter, in a study on effects of teaching RoV in elementary

programming courses Kuittinen and Sajaniemi [30] found that “the teaching of roles seems

to assist in the adoption of programming strategies related to deep program structures, i.e.,

use of variables”. This is a clear indication of applicability of RoV in PC. Furthermore,

since 11 roles can cover all variables in novice-level programs [45], as a tool to be used in

PC, RoV are inclusive and comprehensive as well.

From the above discussion, we conclude that RoV can be utilized in PC tasks as bea-

cons. As RoV should first be learned before they can be utilized as beacons, one can argue

that roles may place a burden on programmers in PC tasks instead of helping them. How-

ever, as Sajaniemi argues [45], RoV are tacit knowledge of experts. Thus, for experts,

roles are somehow already familiar and do not require a huge effort to be learned. In case

of novices, it can be logically concluded from the Sajaniemi’s argument, that novices will

(tacitly) adopt RoV, just like other programming skills, as they gain more experience in pro-

gramming and become experts. It should be noted that, as discussed in the previous chapter,

the exact same difference between experts and novices applies with regard to other elements

of PC models as well, such as beacons, critical lines, general programming knowledge and

other elements of programmers’ knowledge base (see Figure 2.1 and the discussion on dif-

ferent HPC models in Chapter 3).



Chapter 5

Decision Tree Classifiers

In this chapter, we first discuss the important issues about decision tree classifiers in general.

After this, we explain the C4.5 decision tree classifier algorithm and discuss how these

issues are dealt with in the C4.5 algorithm. The issues discussed in this chapter are intended

to help the reader understand how decision trees, and in particular, the C4.5 algorithm work.

Readers who are familiar with these topics may skip this chapter and proceed to the next

one.

5.1 Decision tree classifiers in general

Decision tree classifiers, also called classification trees or simply decision trees, are used

to classify different instances of a set into appropriate classes. Decision trees use classifi-

cation, which is a subfield of machine learning methods. Machine learning methods can

be divided into supervised and unsupervised learning. In supervised learning, to which

classification also belongs, first a set of known instances, called training set, is introduced

to the system. The system classifies each instance of the set, associates each class with

the attributes of each instance and learns to what class each instance belongs. Based on

what the trained system has learned in the learning phase, it is able to classify instances

of a previously unseen set (i.e., the testing or evaluating set) in the testing or evaluating

phase. In unsupervised machine learning method, there is no training set or previous learn-

ing. Instead, the input set is examined for finding regularities between the instances. From

slightly different perspective, machine learning methods can be divided into predictive and

descriptive methods. Predictive methods, such as classification, use some attributes to pre-

dict unknown values of other attributes, whereas descriptive methods, such as clustering,

provide patterns to describe the data.

In a training set, each instance consists of a group of attributes that describe the instance.

One of the attributes is the class of the instance. In the learning phase, the task is to find a

function that maps from other attributes to the class attribute. In the testing phase, the task

23
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is to assign a correct class to each instance of the testing set. The mapping function found

in the learning phase is used to carry out the task in the testing phase.

Decision trees are often constructed using the divide and conquer principle. Instances

of a training set are recursively divided to construct a tree, starting from the root going down

in the tree toward the leaves. A decision tree consists of internal nodes (including the root

node) and leaves. Each internal node contains a test that uses some attribute and results

in splitting the data set into subsets based on the outcome of the test. Each leaf is labeled

with the corresponding class. The outcome of each test at each internal node is shown on

each arc from that internal node to its children. If the internal nodes of a decision tree use

a single attribute of the input instance to determine which child to visit next, the tree is

called univariate tree and the corresponding split is called a binary split. This implies that

internal nodes have only two children. In multivariate tree, more than one attribute is tested

in internal nodes [36].

When a new instance of a set is given to a decision tree, each of its attributes is tested at

the corresponding internal nodes, starting from the root. Depending of the outcome of the

test in each internal node, the appropriate child node of that internal node is visited next.

This is continued until a leaf is encountered and the proper class is assigned to the instance.

There are different issues associated with decision trees and their performance. In what

follows, we present an overview on some of these issues and in the next section we explain

them in more detail in connection with the C4.5 algorithm.

Finding the best attribute. Different attributes of an instance have different values in

how well they are able to split the data. In tree induction (the process of constructing tree

from the training set [36]), it is important to select attributes that can discriminate between

different classes of data in the best possible way. The attribute that best distinguishes be-

tween the samples of the training data will be located in the root of the tree [29]. This

selection process is then repeated to select the best distinguishing attribute for the internal

nodes in a recursive manner. In the literature, this is often referred to as finding the best

split [36]. The best split improves the accuracy of the decision tree and helps to keep its

size right. To find such an attribute, all the attributes are examined using some goodness

measure. These goodness measures are basically statistical tests and include information

gain, distance measures and Gini index, to name a few [29, 36]. The explanation of all

these measures is out of the scope of this thesis, but we will discuss information gain in

more detail in relation to the C4.5 algorithm in the next section.

Finding the right size. After being built, decision trees need to be simplified as they

are often unnecessarily complex. Complexity is associated with overfitting, which in turn

causes generalization problem. Overfitted trees adopt the structure of the learning data in

such a detailed level that they become very specific to that data and cannot classify unseen

data well.
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It has been claimed that the quality of a decision tree depends more on the right size than

the right split [36]. There can be many different sizes of a decision tree that are correct over

the same training set, but the smaller size is preferred. A simpler decision tree is more likely

to correctly recognize more instances of a testing set, because it can capture the structure

of the problem and the relationship between the class of an instance and its attributes more

effectively [43]. In addition to higher accuracy, smaller trees are more comprehensible as

well [28]. Choosing the best discriminating attributes helps keep the size of a tree small.

Because the problem of finding the smallest decision tree that is consistent with the training

set is NP-complete ([29, 44]), selecting the right tests is very important in generating near-

optimal trees.

In his survey on automatic construction of decision trees, Murthy [36] lists several meth-

ods for obtaining right sized trees. The most widely used method is pruning. In pruning,

first the complete tree is built. Here, the complete tree means the tree where no splitting

will improve the accuracy of the tree on the training data. In the next step, those subtrees

with only little impact on the accuracy of the tree are removed. There are many variations

of pruning method, and it has been shown in different studies that there is no single best

pruning method that is superior to the others ([29, 36]). Another method is called stopping

or prepruning, where the instances of the data set are not subdivided any further at some

point. An interesting approach to pruning is to combine the tree building phase and the

pruning phase. In this approach, if it appears that a node will be removed in the pruning

phase, it will not be expanded in the building phase in the first place. This will result in

saving a noticeable amount of time [29].

There are several other issues related to decision trees, such as how to deal with missing

attributes, how to measure the quality of decision trees, etc., that are out of the scope of this

thesis. To sum up, decision trees are powerful, simple and easily interpretable classifiers.

Because of these properties decision trees are used in many different fields, including statis-

tics, pattern recognition, decision theory, signal processing, machine learning and artificial

neural networks [36].

5.2 C4.5 decision tree classifier

We chose the C4.5 algorithm to build the decision tree, because it is a widely used and

the most well-known algorithm for doing so, and has a good combination of error rate

and speed [29]. The C4.5 algorithm preserves the advantages of its predecessor, the ID3

algorithm, but is further developed in many regards. It provides an accurate, readable and

comprehensible model about the structure of data and the relationship between the attributes

and this structure. In what follows, we explain how the C4.5 algorithm deals with the

important issues related to building decision trees presented in the previous section. The
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discussion in this section is based on the book about the C4.5 algorithm written by its

inventor [44].

Finding the best attribute. The earlier version of the C4.5 algorithm used information

gain to evaluate the tests and find the best split. As described below, a more accurate

criterion called information gain ratio was adopted later.

Information gain (also called mutual information) is based on entropy, a measure used in

information theory. Entropy indicates the average information needed to identify instances

of a set. Let S be a set of instances, c be the number of different classes in S and ni be the

number of instances in S that belong to class i. Entropy can be defined as follows:

(1) entropy(S) = −
c

∑
i=1

ni× log2 ni

The information gain is the difference between the entropy of the set S before the split

and the entropy of the set S after the split that follows some test T . Therefore, the informa-

tion gain can be computed by the following formula:

(2) gain(T ) = entropy(S)−
k

∑
j=1

|S j|
|S|
× entropy(S j)

Here, k is the number of outcomes of the test T (i.e., the set of values of the attribute

T ), and S j indicates the number of instances in S, where T has value j. gain(T ) measures

the information gained by splitting the set S according to the test T . To perform the split,

the C4.5 algorithm, like its predecessor ID3, selects the test that gives the maximum infor-

mation gain. Thus, the decision tree is generated so that those internal nodes that give the

largest information gain are expanded.

Although the information gain was used as the criterion in the ID3 for many years with

good results, Quinlan, the inventor of the ID3 and C4.5 algorithms developed a criterion

called information gain ratio to fix the deficiency of information gain: information gain

favors the tests that result in many outcomes. This causes problems when the outcomes of

this kind of tests have no value with regard to the classification, for example, because of

the small number of instances associated with each outcome. His solution to correct the

issue is to adjust the gain of these kinds of tests. The information gain ratio is the ratio

of the information gain to the split information. It gives the information that is obtained

by the ratio of the information relevant to the classification produced by the split, to the

information that is provided by the split itself. Thus, the information gain ratio can be

formally defined as

(3) gain ratio(T ) = gain(T )/split entropy(T )

split entropy(T ) is computed by the following formula:

(4) split entropy(T ) =−
k

∑
j=1

|S j|
|S|
× log2

|S j|
|S|

The denominator in Formula 3 grows rapidly if a test results in many outcomes. How-

ever, if the test were trivial (for example, each outcome of the split contains only one

instance), the numerator would be small. Thus the overall information gain ratio would
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remain small. This will eliminate the chances of these kinds of tests to become selected.

In the case of unknown attribute values, information gain is computed as follows. Let

p1 denote the probability that the value of the attribute A tested in test T is known. Corre-

spondingly, let p2 denote the probability that the value of the same attribute in the same test

is unknown. The information gain is

(5) gain(T ) = p1× (entropy(S)−
k

∑
j=1

|S j|
|S|
× entropy(S j))+ p2×0

The value of zero in the end of Formula 5 reflects the fact that if the value of the attribute

is missing, clearly no information can be gained for the corresponding instance from the

split in question. If we suppose that the value of A is known in fraction F of the instances in

the set S, we get the following simpler formula for computing information gain for unknown

attribute values:

(6) gain(T ) = F× (entropy(S)−
k

∑
j=1

|S j|
|S|
× entropy(S j))

Formula 6 is the same as Formula 2 multiplied by the fraction of the instances that have

the value of the corresponding attribute available. The effect of missing attribute values in

computing the information gain ratio can be taken into consideration in the similar way,

using Formula 4.

Finding the right size. The issue of finding the right size in the C4.5 algorithm is

handled by pruning the tree after it has been constructed. The tree is built using the divide

and conquer principle without evaluating any split at the building phase. This results in

an overfitted tree, which is then pruned to become simpler: those parts of the tree that

are not important in terms of the accuracy are removed. This approach includes an extra

computation for building the parts of the tree that will be eliminated later in the pruning

phase. However, this is well justified by the more accurate and reliable final result [44].

In the C4.5 algorithm, pruning includes either replacing subtrees with leaves or with

one of its branches. Pruning is error-based, that is, the replacement is carried out if it results

in a lower predicted error rate. The process starts from the bottom of the tree and proceeds

by investigating each non-leaf subtree. To predict the error rate, the C4.5 algorithm uses a

sophisticated pruning heuristic which is based on computing the probability of appearance

of misclassified instances in a leaf relative to all instances covered by that leaf.
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Method

We have applied two methods in AR problem. The first method uses a manually constructed

decision tree to recognize algorithms (we call it Manual Decision Tree method, i.e., MDT-

method), while the second method uses a decision tree constructed by the C4.5 decision tree

classifier to be used in the recognition process (which we call C4.5 Decision Tree method,

i.e., CDT-method). Both methods consist of two phases. The first phase of the methods

are essentially the same, with the difference mainly pertaining to the second phase, that is,

the process of constructing the decision tree and recognizing algorithms. In this chapter we

first describe the methods in terms of what is common between them and then present their

differences.

6.1 Common phase of the methods

MDT-method and CDT-method are both based on static analysis of source code includ-

ing roles of variables (RoV), language constructs and software metrics. We extract several

characteristics related to statistics of language and metrics, which enable us to distinguish

between different algorithms. These characteristics are converted into vectors, each vector

describing the corresponding algorithm. Thus, the problem of AR is transformed to the

problem of finding similarities and differences between characteristic vectors. The novelty

of the methods is in using RoV as a characteristic of algorithms, more specifically, as bea-

cons that indicate the type of algorithms. This issue was discussed in Chapter 4 and we will

further elaborate on this later in Chapter 8.

We divided the characteristics of the algorithm into numerical characteristics (charac-

teristics that can be expressed as positive integers) and descriptive characteristics (charac-

teristics that describe some features of algorithms and are not presented as integers). These

characteristics are shown in Table 6.1. Additionally, the last three characteristics in the ta-

ble, which are related to the numerical and descriptive characteristics, are also computed.

In this thesis, we will refer to these characteristics using the corresponding abbreviation

28
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Numerical characteristics Description
NAS Number of assignment statements in the algorithm.
LoC Lines of code.
MCC McCabe complexity (i.e., cyclomatic complexity) [33].
N1 Total number of operators in the algorithm.
N2 Total number of operands in the algorithm.
n1 Number of unique operators in the algorithm.
n2 Number of unique operands in the algorithm.
N Program length (N = N1 + N2).
n Program vocabulary (n = n1 + n2).
NoV Number of variables in the algorithm.
NoL Number of loops. Supported loops are for loop, while

loop and do while loop.
NoNL Number of nested loops in the algorithm.
NoB Number of blocks in the algorithm. A block refers to a

sequence of statements wrapped in curly braces, for example,
a method or a control structure (loops and conditionals).

Descriptive characteristics Description
Recursive Whether the algorithm uses recursion.
Tail recursive Whether the algorithm is tail recursive.
Roles of variables Roles of the variables of the algorithm.
Auxiliary array Does the algorithm use an auxiliary array (for the

algorithms that use arrays in their implementation).
Other characteristics Description
Block/loop information Information about blocks and loops, including starting

and ending lines, length and interconnection between
them (how they are positioned in relation to each other).

Loop counter information Information about how the value of loop counters are
initialized and updated. This is used to determine
incrementing/decrementing loops (the value of the loop
counter increases/decreases after each iteration).

Dependency information Direct and indirect dependencies between variables
(variable i is directly dependent on variable j, if i gets
its value directly from j. If there is a third variable k
on which j is directly or indirectly dependent, i also
becomes indirectly dependent on k. A variable can be
both directly and indirectly dependent on another one).

Table 6.1: The numerical, descriptive and other related characteristics computed from al-
gorithms (from [P3])
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shown in the first column of the table.

Characteristics N1, N2, n1, n2, N and n are Hasltead software complexity metrics [20]

that are widely used in plagiarism detection tools (see, e.g., [19, 26]). The Other charac-

teristics presented in the last three line of the table are used to identify different patterns

in algorithms that can be utilized in the recognition process. We discuss these character-

istics more in the next section when we explain the application of the method to sorting

algorithms.

We implemented an Analyzer that computes all the characteristics of Table 6.1 for each

algorithms and stores them in a database. Therefore, each algorithm is represented as a

n-dimensional vector in the database where n is the number of characteristics. In order to

be used in the process, descriptive characteristics are converted into numerical values. As

an example, if an algorithm is recursive (or non-recursive), it has a value of 1 (or 0) in the

corresponding database column.

Both MDT-method and CDT-method consist of two phases. In the first phase, dif-

ferent implementations of those algorithms supported by the tool are collected, analyzed,

converted into characteristics vectors and stored in the database. In the second phase, a

decision tree is constructed and the algorithm recognition is performed using this decision

tree.

6.2 Description of the methods

After the first phase which is common between the MDT-method and the CDT-method, the

methods use different ways to recognize algorithms.

Manual decision tree method

To perform the recognition, we manually construct a decision tree that includes a test on

the characteristics in each node. The tests comprise both examination of the frequency of

occurrences of the numerical characteristics in an algorithm, as well as investigation of the

descriptive characteristics of the algorithm.

The algorithms stored in the database in the first phase are used to construct the man-

ual decision tree and thus constitute the learning data. After converting the algorithms

of the learning data into vectors of characteristics and storing them in the database and

constructing the manual decision tree, the testing phase follows. In the testing phase, a

set of previously unseen algorithms including both those algorithms of the same type as

in the training set, as well as other types of algorithms or irrelevant code are analyzed.

The Analyzer computes the numerical and descriptive characteristics of each test sample,

converts it into characteristic vectors and stores it in the database. In the next step, the

Analyzer retrieves the information of the algorithms of the learning data from the database
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and calculates the minimum and maximum limits of the numerical characteristics from this

information. If the value of a numerical characteristic of a test sample does not fit into the

range of the minimum and maximum values of the corresponding characteristic calculated

from the learning data, the test sample is labeled as Unknown. In addition, a message is

shown to the user indicating the numerical characteristic that does not fit into the permitted

range, as well as whether its value is smaller or greater than the corresponding numerical

characteristic of the learning data. Finally, the information of the test sample is stored in

the database and the recognition process for this test sample is ended. Otherwise, if the test

sample passes this stage, the examination process continues with examining the descriptive

characteristics according to the steps given by the corresponding decision tree up to a leaf

node (a decision tree for recognizing sorting algorithms is shown in Figure 7.1 in the next

chapter). Depending on the results of this examination, the target algorithm (i.e., the test

sample) is labeled with the type of the algorithm indicated by the leaf of the decision tree to

which the target algorithm has ended up. The information of the target algorithm is stored

in the database in this case as well.

It is possible that a legitimate algorithm of the testing data is incorrectly labeled as

Unknown, for example, due to a poor implementation style (which may lead to greater or

smaller number of numerical characteristics). In this cases, a user can always examine the

database manually to see whether the algorithm is incorrectly labeled as Unknown and if

so, correct its type. This way the knowledge base of the system can be extended. Next

time, the similar algorithms will be labeled correctly. For more detailed explanation of the

MDT-method see [P2].

C4.5 decision tree method

In the CDT-method, a decision tree is constructed using the C4.5 algorithm based on the

data set consisting of the algorithms of the supported types. Next, the performance of the

decision tree is empirically evaluated using leave-one-out cross-validation technique. We

will explain the process of constructing the decision tree and its evaluation in more detail

in Chapter 7, where we describe the related experiment conducted for recognizing sorting

algorithms.

6.3 Application to sorting algorithms

In this section we further elaborate on the method by explaining its application to five com-

mon sorting algorithms: Insertion sort, Bubble sort, Selection sort, Quicksort and Merge-

sort. Sorting algorithms are suitable for this purpose for the following reasons. They are

widely discussed topic in computing education. They are used as examples in programming

courses as well as in courses on data structure and algorithms. Consequently, large number



CHAPTER 6. METHOD 32

Characteristic Description
MWH Whether the algorithm includes a most-wanted holder role.
TEMP Whether the algorithm includes a temporary role.
In-place Whether the algorithm needs extra memory.
OIID (Outer Incrementing Inner Decrementing) Whether from the two

nested loops the outer is incrementing and the inner is decrementing.
IITO (Inner Initialized To Outer) Whether from the two nested loops the

inner loop counter is initialized to the value of the outer loop counter.

Table 6.2: The descriptive characteristics specific to the sorting algorithms (from [P3])

of sorting algorithms are easily accessible from textbooks, the Web, students’ work as well

as in handouts of the related courses. Sorting algorithms are also easy to analyze as they are

not too complex. Moreover, there are many different sorting algorithms that perform the

same computational task. This feature makes discriminating sorting algorithms a challeng-

ing task. Finally and most importantly, as we will discuss later, sorting algorithms include

both very similar and yet very different algorithms with respect to their characteristics. As

an example, Insertion sort and Bubble sort algorithms are very similar, while Mergesort

and Bubble sort algorithms are quite different. This is a very beneficial feature of sorting

algorithms from the perspective of our method, since it results in the performance of the

method to be tested more thoroughly.

In addition to the characteristics presented in Table 6.1, we computed the descriptive

characteristics of Table 6.2 which can be used in the process of recognizing the sorting

algorithms. These characteristics can be easily computed based on those shown in Table

6.1. OIID and IITO are computed using the characteristic NoNL, Loop counter information

and Dependency information. Moreover, absence of an Auxiliary array presented in Table

6.1 implies that the corresponding sorting algorithm is an in-place algorithm. Finally, by

examining the roles of the variables in the target algorithm detected by an automatic role

detector, the existence of the roles MWH and TEMP can easily be found out (see Table 4.1

for the definition of the roles).

At the beginning of our study, we manually analyzed a number of different versions

of the five aforementioned sorting algorithms. Based on the results of these analyses, we

posited a hypothesis that the numerical and descriptive characteristics shown in Tables 6.1

and 6.2 are sufficient to describe the sorting algorithms and could be used to identify them.

The problem that we were trying to solve was whether a new unknown algorithm from the

testing data could be reliably enough identified by comparing its characteristics with the

corresponding information of the algorithms from the learning data.

Next, we developed a prototype Analyzer that is able to automatically compute all the

data and convert algorithms into characteristic vectors. The Analyzer is implemented in

Java and the current version is able to process source code written in Java. It parses the
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code, calculates all its numerical and descriptive characteristics shown in Table 6.1 and 6.2

and analyzes all the related data. The Analyzer stores the data into a database consisting

of the following four tables: Algorithm, Block, Variable, and Dependency. We used an

automatic role detection software to detect roles [6].

Table 6.3 shows the numerical characteristics computed from the collected sorting al-

gorithms. For each characteristic in the table, the first number shows the minimum value

of the characteristic for the corresponding algorithm, and the second number depicts the

maximum value. For each sorting algorithm, the first row shows the results of applying the

MDT-method (which we call MDT-experiment), and the second row shows the results of

applying the CDT-method (respectively called CDT-experiment). Note that the difference

between the values of numerical characteristics in two rows is due to the different methods

we used in each experiments with regard to the data. In the MDT-experiment, we used

Holdout Method [53], where we first randomly collected the learning data consisting of 70

samples for analysis, then we manually constructed a decision tree based on this analysis,

and in the next step we collected separately a total of 217 more samples as testing data to

carry out the experiment. Thus, the numerical characteristics shown in the first row of Ta-

ble 6.3 are resulted from 70 samples of the learning data. In the case of the CDT-experiment,

we collected 209 different sorting algorithms as the data set, ran them through the Analyzer

and then fed the resulted characteristics to the C4.5 algorithm and finally, used leave-one-

out cross-validation technique to evaluate the performance of the decision tree constructed

by the C4.5 algorithm. Therefore, the numerical characteristics shown in the second row

of Table 6.3 are resulted from 209 samples of the data set. We discuss the process of data

collection in the next chapter where we present the experiments and discuss the results.

A quick glance at Table 6.3 reveals that these numerical characteristics divide the five

sorting algorithms into two groups, a group with smaller number of numerical characteris-

tics consisting of the Insertion sort, Bubble sort and Selection sort algorithms, and a group

with larger number of numerical characteristics comprising the Quicksort and Mergesort al-

gorithms. Therefore, the recursive and non-recursive sorting algorithms can already be dif-

ferentiated by their numerical characteristics alone. The decision trees presented in Figures

7.1 and 7.4 in the next chapter illustrate the mechanism of recognizing the aforementioned

types of the sorting algorithms. For detailed explanation on applying the method to sorting

algorithms see the original articles [P2, P3].

In the next chapter, we further describe the application of the methods to the aforemen-

tioned sorting algorithms along with the results in the context of the experiments that we

conducted. In the following, we describe the role detection software that we used.
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Algorithm NAS LoC MCC N1 N2 n1 n2 N n

Insertion 8/11 13/21 4/6 40/57 47/58 3/6 2/4 87/115 5/10
8/12 13/32 4/6 40/69 47/69 3/9 2/5 87/138 5/14

Selection 10/12 16/25 4/5 47/61 51/64 4/6 2/5 98/125 6/11
10/14 16/31 4/5 42/68 47/73 4/9 2/9 89/141 6/18

Bubble 8/11 15/21 4/5 46/55 49/57 4/6 2/4 95/112 6/10
8/13 15/30 4/6 37/71 45/72 3/12 2/5 82/143 5/17

Quicksort 6/15 31/41 4/10 84/112 77/98 9/17 2/7 161/210 11/24
6/19 26/57 4/14 72/152 69/138 7/24 2/12 141/290 9/36

Mergesort 14/22 33/47 6/8 96/144 94/135 11/16 5/10 190/279 16/26
11/27 27/56 6/10 94/159 84/146 10/26 3/14 178/305 13/40

Table 6.3: The numerical characteristics of the 70 sorting algorithms of the learning data
in the MDT-experiment (first row) and of the 209 sorting algorithms of the data set in the
CDT-experiment (second row). The first number indicates the minimum and the second
number the maximum of the value of the corresponding characteristic (see Table 6.1 for
explanation on the abbreviations)

6.4 The tool for detecting roles of variables

A tool developed by Bishop and Johnson for automatic detection of roles of variables [6]

is integrated into the Analyzer. The tool detects roles using program analysis techniques,

particularly program slicing and data flow analysis. First, all occurrences of each variable

in the program are captured. The outcome of this analysis is the program slice for each

variable. This is followed by data flow analysis for each program slice. Based on the initial

analysis of the example programs, the tool associates each role with a set of assignments and

usage conditions. To detect roles, the tool compares the assignments and usage conditions

of each variable of the target program with these predefined sets. If the user has provided

a role for a variable, the tool checks whether all corresponding conditions for the provided

role are met by the corresponding variable. If so, the tool confirms that the role provided

by the user is correct. If the conditions are not met, the tool prints the role it believes to

be correct and justifies its decision by giving an appropriate message. If there is no role

suggested by the user, the tool simply prints the role it considers the most appropriate for

the variable in question. More detailed description of the assignments, usage conditions

and how the role detector works is beyond the scope of this thesis. For more information

see [6].

Bishop and Johnson have developed their role detector for educational purposes. There-

fore, the tool allows users to provide a role for a variable. Although providing a role for a

variable is optional, special tags along with the name of variable must be provided for each

variable, otherwise the tool will not consider the variable. The tool can be further developed

so that the tags and name of variables are provided automatically. When preparing the data
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for our experiments (see Chapter 7), we also assigned a role to all the variables to be able

to detect the possible differences between the roles generated by the tool and those that we

believed to be correct. All the roles, however, were detected automatically.

Before using the role detector, we tuned it up a little bit in order to improve its per-

formance. As an example, a temporary role typically appears in swap operations, which

in turn is commonly used in sorting algorithms. In programs where a swap operation was

performed in a separate method, the temporary role was sometimes falsely recognized as

a fixed value by the role detector. To solve the problem, we automatically removed the

method calls to swap operations in a preprocessing step, and inlined the corresponding

swap method body in the target programs. As the result, temporary roles were detected

much more accurately.
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Experiments and Results

In this chapter we explain the two experiments [P2, P3] we conducted on the five sorting

algorithms: Insertion sort, Bubble sort, Selection sort, Quicksort and Mergesort. The first

experiment is conducted using the MDT-method, where the decision tree is constructed

manually, and we call it MDT-experiment. The second experiment is based on the CDT-

method and uses a decision tree automatically constructed by the C4.5 algorithm, and is

called CDT-experiment. The results of each experiment are also presented after the de-

scription of the experiment. In this chapter, the process of data collection and preparation

as well as presentation of the results are described briefly. For more detailed explanations,

see the original articles [P2, P3].

7.1 Manual decision tree experiment

In this section, we describe the different phases of the experiment including data collection,

data preparation, manual decision tree construction and the results.

7.1.1 Data

A total of 287 algorithms (both for learning and testing data) were collected for the exper-

iment, without any preference for particular sources. The algorithms were collected from

various textbooks on data structures and algorithms, as well as from course materials avail-

able on the Web. Some of the Insertion sort and Quicksort algorithms were from authentic

student work.

The collected algorithms, both the learning and testing data, were investigated on the

source code level, they were run and their claimed type and correctness were verified. If the

algorithms included non-relevant code (e.g., printing statements, code related to interface,

etc.), these extra code was removed since our method, at its present state, cannot process

these kinds of application data. However, the implementation of the algorithm itself was

36
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Algorithm Learning data Testing data
Insertion sort 17 (24%) 35 (16%)
Bubble sort 11 (16%) 30 (14%)
Selection sort 14 (20%) 29 (13%)
Quicksort 16 (23%) 23 (11%)
Mergesort 12 (17%) 22 (10%)
Other - 78 (36%)
Total 70 217

Table 7.1: The number and the percentage of each sorting algorithm in the learning and
testing data (from P2)

left untouched.

The role detection tool that we integrated into the Analyzer (developed by C. Bishop

and C. G. Johnson [6]) requires that all variables of the program are annotated using special

tags (for more information about the tool, see Section 6.4). We analyzed all variables in

all algorithms and assigned a suitable role to them along with their name and the required

tags. Although providing the roles is not required by the tool, we did it to be able to easily

track the cases where the failure in recognizing an algorithm has been due to the failure in

detecting roles correctly. We used this information to report the reasons for the incorrectly

recognized test cases.

Learning data

This experiment consists of the two following phases. The first phase includes running the

algorithms of the learning data, analyzing the resulted characteristics and constructing a

manual decision tree based on this analysis. The second phase involves running the algo-

rithms of the testing data by the Analyzer and evaluating the accuracy of the method and

the decision tree.

In the first phase, we collected 70 algorithms as the learning data. The learning data

included only the five types of aforementioned sorting algorithms. The numerical and de-

scriptive characteristics of the algorithms computed by the Analyzer were stored in the

database, along with the actual type of the respective algorithm. The number and the per-

centage of each type of the analyzed algorithms in the learning data is shown in the second

column of Table 7.1. In the table, the first number indicates the number of the corresponding

algorithm, and the second number in the parentheses shows the percentage of the algorithm

from the total number of the algorithms of the learning data. In the process of collecting

the learning data, the criterion was that all algorithms should have an adequate number of

representatives in the learning data and the exact number of each algorithm in comparison

to other algorithms was not particularly planned.
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Figure 7.1: The manually constructed decision tree for recognizing the type of the five
sorting algorithms in the MDT-experience (from [P2])

Decision tree

Based on the learning data, we constructed the decision tree of Figure 7.1 for classifying

the sorting algorithms. The decision tree has nine internal nodes (including the root) and

ten leaves. The internal nodes are represented by rectangles with white background and the

leaves are depicted by rectangles with gray background. Each internal node includes a test.

The outcome of a test in an internal node determines which child of that node will be visited

next. There are arcs from each internal node to its children (or to a leaf) annotated by the

outcome of the test in the corresponding node. Each leaf is labeled by a type of the sorting

algorithms, or by the word “Unknown”.

Characteristic “Recursive algorithm?” is the best discriminator and thus is used in the

root. It divides the sorting algorithms into two groups, that is, recursive and non-recursive,

with the accuracy of 100%, as all the Quicksort and Mergesort algorithms of the learning

data are recursive and all the Insertion sort, Bubble sort and Selection sort algorithms are
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non-recursive1. The tests in both children of the root examine whether the numerical char-

acteristics of the recognizable algorithm are within those values retrieved from the database

for the recursive or non-recursive algorithms. If the numerical characteristics are not within

the permitted limit, the algorithm is labeled with “Unknown” and the process of recogni-

tion is terminated. Otherwise, in the case of recursive algorithms, the next visited node is

the one labeled with “Temporary role?”, where the performed test is whether the algorithm

includes a variable with a temporary role. Quicksort algorithms typically include the tem-

porary role, which appears in connection with swap operations to rearrange the elements of

an array. However, Mergesort algorithms do not usually include a temporary role, since due

to performing merge operation, there is no need to perform swap operations. Nevertheless,

further investigation of the analyzed Mergesort algorithm implementations revealed that

some of them do use swap operations and thus include the temporary role. Therefore, if the

outcome of the test is positive, the process is continued by visiting the left child of the node,

which is labeled with “In-place?”. The test performed in this node is whether the recursive

algorithm performs the sorting without making use of an auxiliary array. Again, using an

auxiliary array is typical for Mergesort algorithms, but does not appear in Quicksort algo-

rithms. However, some of the Mergesort algorithms work In-place and thus there is a need

to perform another test to distinguish them from the Quicksort algorithms. Next, the left

child is visited, which is the last node of this subtree and examines whether the recursive

algorithm is tail recursive. All the analyzed Quicksorts are tail recursive, which is not the

case with the analyzed Mergesort algorithms.

On the right subtree of the root, the three non-recursive algorithms are examined. If

the numerical characteristics of the recognizable non-recursive algorithm are within the

permitted limit, the left child is visited with testing the existence of a variable with a most-

wanted holder role. Analyzing the non-recursive sorting algorithms of the learning data

showed that all the Selection sort algorithms include the most-wanted holder role, whereas

none of the Insertion sort and Bubble sort algorithms do. This is because Insertion sort and

Bubble sort algorithms do not include selection of a minimum (or a maximum) element

from a list (see Table 4.1 for the definitions of the roles). Thus, presence of the most-

wanted holder role in the analyzed type of sorting algorithms is a strong indication (i.e.,

beacon) of a Selection sort. If the target non-recursive algorithm does not include the most-

wanted holder role, the next visited node is the node labeled with “OIID?”, which stands

for “Outer loop Incrementing Inner Decrementing”. All the Insertion sort and Bubble sort

algorithms included two nested loops. In the analyzed Insertion sort algorithms, while

stepping through the elements of an array, the value of the loop counter of the outer loop

increases, whereas the value of the loop counter of the inner loop decreases. Although

1Although it is feasible to write, for example, a recursive Bubble sort or a non-recursive Quicksort, it did not
occur in our randomly selected data set. Moreover, it can be argued that whether, for example, a non-recursive
Quicksort is essentially the same algorithm as the commonly known recursive Quicksort
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the Bubble sort algorithms mostly work so that the outer loop is decrementing and the

inner loop is incrementing, with regard to OIID characteristic, some of them work like

the Insertion sort algorithms. Therefore, further test is needed to distinguish these kind

of the Bubble sort algorithm implementations from the Insertion sort algorithms. With

positive outcome of the test performed in this node, the next node to visit is the node labeled

with “IITO?”, which is an abbreviation for “Inner loop counter Initialized To Outer loop

counter’s value”. As shown in Figure 7.1, this is the case in the Insertion sort algorithms.

But in Bubble sort algorithms, the inner loop counter is initialized whether to zero or to the

length of the array.

Note that the node labeled with “Numeric characteristics within permitted limit?” does

not include a single characteristic of an algorithm, but rather the test for investigating all the

numerical characteristics of the algorithm. It filters out those algorithms with less or more

numerical characteristics, labels them with the Unknown type, stores them in the database,

and gives a message about the particular characteristic(s) that does not fit within the permit-

ted limits. If these filtering nodes are not taken into account, the number of internal nodes

that include a test using a single characteristic would be seven, and the maximum depth of

the tree, which is five, would be reduced to four.

Characteristics like OIID or IITO may appear very specific lacking the value of gener-

alizability. They are indeed specific. They are, for example, not applicable to the Quicksort

algorithms nor to the Mergesort algorithms, because these algorithms either do not have

two nested loops or they cannot be separated by these characteristics. Moreover, the fact

that these characteristics are located near the leaves, reflects their specificity. These char-

acteristics, however, provide a valuable mean to separate the Insertion sort algorithms from

the Bubble sort algorithms. Specially, the role of IITO is crucial in this regard. In terms

of the other characteristics, these two algorithms are so similar that it seems very difficult

to otherwise differentiate between them (see Table 6.3 and Figure 7.1). While these char-

acteristics are specifically computed to be used in recognition of the sorting algorithms,

their applicability as good discriminators for other fields of algorithms remains to be seen

in future work.

As can be seen from Figure 7.1, the roles of variables play an important and distinctive

role in the process. Specially the most-wanted holder role that separates the Selection sort

algorithms from the Insertion sort and Bubble sort algorithms is highly important, since

the other characteristics of these algorithms are quite similar and thus cannot separate them

reliably (see Table 6.3).

After conducting our second experiment, which we will describe in the next section,

we noticed from the results that the manually constructed decision tree of Figure 7.1 is not

optimal. The automatic decision tree constructed by the C4.5 algorithm in our second ex-

periment (illustrated in Figure 7.4) showed that Quicksort and Mergesort algorithms can be
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distinguished solely based on “Tail recursive” characteristic and thus there is no need to ex-

amine the characteristics “Temporary” and “In-place”. Correspondingly, with regard to the

non-recursive sorting algorithms, the automatic decision tree of Figure 7.4 showed that the

Bubble sort and Insertion sort algorithms can be distinguished using only the characteristic

“IITO”, and thus the characteristic “OIID” can be left out of the process. Therefore, the

automatic decision tree is more optimal and simple with regard to the size, and as discussed

in Chapter 5, it has been claimed that in terms of the quality, the right size of a decision

tree is more important that the right split [36]. This comparison between the manual and

automatic decision trees with regard to the optimality, simplicity and comprehensibility

shows that in algorithm recognition problem, even in a relatively simple task of recognizing

sorting algorithms, and with a fairly small data set as we used, the decision tree should be

constructed using machine learning methods. Therefore, the manual decision tree is more

like an educational example that depicts the steps that recognition of the sorting algorithms

may consist of, and although it performs with a reasonable accuracy (86% of correctly iden-

tified true positive and true negative cases, as will be discussed in the following), its value

resides in the fact that it illustrates the justification of using machine learning methods in

constructing the decision tree to classify algorithms, and exemplifies their applicability and

suitability in the task. For larger data sets and a more comprehensive set of algorithms, the

necessity of using an automatically constructed decision tree seems evident.

Testing data

In the second phase, 217 algorithms were collected as testing data. The testing data mainly

consisted of the five sorting algorithms, but included other algorithms as well. We refer to

these algorithms as Other. The number and percentage of different algorithms of the testing

data is shown in the third column of Table 7.1.

The Other algorithms were collected so that they do not differ greatly from the five sort-

ing algorithm in terms of the numerical characteristics. The majority of these algorithms

were other sorting algorithms such as Heapsort, Shell sort, Radix sort, Topological sorting,

etc. The Other algorithms also included various enhanced types of the five sorting algo-

rithms. These enhanced sorting algorithms include some additional code that changes the

essence of the corresponding algorithms. As the result, the enhanced algorithms cannot

be regarded as the basic form of the original algorithms. A typical example of these en-

hanced algorithms is the hybrid algorithm of Quicksort and Insertion sort, where sorting is

carried out using Quicksort as long as the number of elements to be sorted is above some

prefixed number (e.g., 10), and below this number Insertion sort is used. Another example

is Cocktail sort, also known as Bidirectional Bubble sort, which is basically a Bubble sort

that uses an additional loop and conditional statements to speed up sorting. Moreover, the

Other algorithms contained some completely different algorithms, including binary search
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algorithms, or purely application data, such as small parts of interface code or code written

to test how some algorithm works.

This method of separating learning and testing data is commonly known as Holdout

Method [53]. In this method, the proportion of the number of samples used as the training

and testing set can be decided by the person who conducts the experiment. In order to avoid

overfitting problem and achieve the best generalization performance, machine learning and

classification methods often follow a commonly used pattern to split data set into training

and testing set. For example, the proportion of 50-50 or 70 percent for training set and

30 percent for testing set is widely used. We use a comprehensive testing data in order to

evaluate the performance of the method as accurately as possible.

7.1.2 Testing strategy

For testing the performance of the method and decision tree, we used the following strategy.

We measured the number of the True Positive (TP) (indicates a case where the Analyzer cor-

rectly recognizes an algorithm that belongs to the target set of the five sorting algorithms),

True Negative (TN) (correspondingly indicates rejecting an algorithm that is not among the

target set), False Positive (FP) (denotes that an algorithm not belonging to the target set is

incorrectly recognized as one belonging to the set) and False Negative (FN) (correspond-

ingly an algorithm belonging to the set, which is not recognized as such or is recognized as

another member of the set) cases. TP and TN cases indicate successful passing of tests and

accurate performance of the Analyzer, whereas FP and FN cases mean failure in tests and

poor performance of the Analyzer. In the following, we further illustrate these cases with

examples and outputs of the Analyzer in each case.

An example of TP is a Quicksort recognized as such. In these cases, the Analyzer

simply outputs “The algorithm is a Quicksort”. If a binary search algorithm, for example,

is recognized as Unknown, a TN case is in question. In this case, the message would be

something like the following: “The algorithm seems to be a recursive algorithm, that has

the following characteristics out of the permitted limit: Number of operators is below the

permitted limit, Number of operands is below the permitted limit, Assignment statement is

below the permitted limit, Line of code is below the permitted limit, Number of loops is

below the permitted limit, Program length is below the permitted limit”. If, on the other

hand, a Quickselect is falsely recognized as a Quicksort, we have the FP case with the

Analyzer providing the following message: “The algorithm is a Quicksort”. As we will

discuss below, the FP cases are very rare. Finally, an example of FN is when a Quicksort

is falsely recognized as a Mergesort, for example, due to the failure of the role detector to

recognize temporary role (see Figure 7.1). The output of the Analyzer in this case would

be “The algorithm is a Mergesort”. Another typical example of the FN cases is when a

Selection sort algorithm is not recognized as such (i.e., recognized as Unknown) because
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Figure 7.2: The number and percentage of the TP, TN, FP and FN cases from the overall
results (from [P2])

some of its numerical characteristics are below or above of those Selection sorts known to

the Analyzer (i.e., those which exist in the learning data).

7.1.3 Results

From the 217 sorting algorithms tested in the experiment, 186 algorithms (i.e., 86%) were

identified successfully (TP and TN cases) and 31 algorithms were identified erroneously

(FP and FN cases). These results are depicted in Figure 7.2. As the figure shows, out of

the 31 falsely identified cases, 29 cases are FN that can be resulted from, for example, id-

iosyncratic or different implementation style than those in the learning data. The interesting

observation is that out of the 31 falsely identified test cases, only 2 cases are FP (i.e., less

than one percent of the testing data): a Heapsort algorithm identified as Mergesort and a

Quickselect algorithm recognized as Quicksort (the testing data included several different

implementations of Heapsort algorithms but only one Quickselect algorithm). This sug-

gests that the numerical characteristics filter out non-relevant algorithms (algorithms that

do not belong to the target set) well. Most of the FN cases were those algorithms belonging

to the target set, but were filtered out and falsely recognized as Unknown due to different

number of the numerical characteristics than those of the algorithms in the learning data.

However, there were four FN cases in the results with the numerical characteristics within



CHAPTER 7. EXPERIMENTS AND RESULTS 44

35

30
29

23
22

25

32

24

15

16

3

5 5

8

6

0

5

10

15

20

25

30

35

40

Insertion sort Bubble sort Selection sort Quicksort Mergesort

N
um

be
r o

f A
lg

or
ith

m
s

Total True Positive False Negative

Test Results for the Five Sorting Algorithms

Figure 7.3: The test results (the TP and the FN cases only) for the five sorting algorithms
(from [P2])

the permitted limit, but were falsely recognized because of failure of the tool to identify

their characteristics (such as the temporary role): one Insertion sort was falsely recognized

as a Bubble sort and three Quicksorts were falsely recognized as Mergesorts. Since the

algorithms of these cases belong to the target set and are categorized as FN errors, they are

not reported as FP cases.

Figure 7.3 shows the results for the five sorting algorithms, separated based on the TP

and the FN cases. For each sorting algorithm, the first column in blue color shows the total

number of the algorithm, the second column in green shows the number of the TP cases and

the third column in red shows the number of the FN cases.

In order to further analyze the results of 7.3, we introduce three more metrics calculated

based upon the TP, FP and FN cases. These metrics are presented as percentages and indi-

cate the accuracy of the tests. They are called the True Positive Rate (TPR) (equivalently,

sensitivity or recall), the False Negative Rate (FNR) and the precision, and are defined as

follows. TPR is the proportion of the positive case algorithms that are correctly recognized,

TPR = TP/(TP + FN). FNR is the proportion of the positive case algorithms that are in-
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Class Total TP FN FP TPR FNR Precision
Insertion sort 35 32 3 0 91.4% 8.6% 100%
Bubble sort 30 25 5 0 83.3% 16.7 100%
Selection sort 29 24 5 0 82.8% 17.2% 100%
Quicksort 23 15 8 1 65.2% 34.8% 93.7%
Mergesort 22 16 6 1 72.7% 27.3% 94.1%

Table 7.2: The value of the TP, FN and FP cases, as well as the value of the True Positive
Rate (TPR), False Negative Rate (FNR) and precision for each sorting algorithm in the
MDT-experiment

correctly recognized as negative FNR = FN/(TP + FN). The precision is the proportion

of the actual positive case algorithms to all algorithms recognized as positive, precision =

TP/(TP+ FP). The value of these three metrics for the five sorting algorithms, along with

the number of the TP, FP and FN cases needed for calculating them are shown in Table 7.2.

Large value of TPR indicates that there are few positive case algorithms that are falsely

recognized as negative. As shown in Table 7.2, the value of TPR for the non-recursive

sorting algorithms are larger than those for the recursive sorting algorithms. This implies

that the Quicksort algorithms and Mergesort algorithms are misclassified more often than

the non-recursive sorting algorithms. Moreover, as can be seen from Table 7.2, the larger

value of TPR means the smaller value of FNR. Consequently, the value of FNR for the

non-recursive sorting algorithms are smaller than those of the recursive sorting algorithms.

The value of the precision for the non-recursive sorting algorithms is 100%, indicating that

there is no single algorithm not belonging to the target set that is falsely recognized as

Insertion, Bubble or Selection sort algorithm. But, as discussed earlier, one algorithm was

falsely recognized as a Quicksort (i.e. a Quickselect algorithm) and one as a Mergesort (a

Heapsort algorithm).

The fact that Insertion, Bubble and Selection sort algorithms are generally recognized

better than Quicksort and Mergesort algorithms can be explained as follows. The more

complex algorithms are the more their implementations are likely to vary. Quicksort and

Mergesort are more complex than the other three non-recursive sorting algorithms. As the

result, they can be implemented in more different ways using different strategies in lower

level details. For example, as discussed in Chapter 2, there are several different strategies

to carry out pivot selection and partitioning in Quicksort. Existence of different options in

implementing algorithms results in a higher possibility for implementations of those algo-

rithms to differ from each other, especially with regard to their numerical characteristics.

For example, as will be discussed in the following, all those 27% FN cases for the Mergesort

algorithms are due to the difference between the algorithms in their numerical characteris-

tics. This will pose a challenge to us in future work when we further develop our method to
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cover other fields of algorithms. We will have to come up with a more sophisticated method

that performs better with more complex algorithms.

Table 7.2 also illustrates that in the case of recursive algorithms, the Mergesort algo-

rithms are recognized better in comparison with the Quicksort algorithms (73% vs. 65%).

This can be explained as follows. The reason for the failure in recognizing the Mergesort

algorithms is that the number of the numerical characteristics of these FN cases (6 Merge-

sort algorithms) has been out of permitted limit. The same reason applies for the FN cases

of the Quicksort algorithms, but in addition, there is another reason beyond the FN cases in

this case, namely, failure of the role detector in recognizing the temporary role. Five out of

the eight FN cases in the Quicksort algorithms occurred because of the difference between

the number of the numerical characteristics of these Quicksort algorithms and those in the

learning data, and the rest three of them occurred because of the absence of the temporary

role in the algorithms or failure in recognizing it. As illustrated in the decision tree in Figure

7.1, when the role detector fails to recognize the temporary role, a Quicksort will not be rec-

ognized correctly. On the other hand, after a bit of tuning, the role detector performed very

well in the case of the Selection sorts. The role detector detected all most-wanted holder

roles correctly, resulting in a fair percent of correct recognition of the Selection sorts, that is,

83% (see Figure 7.1 and Table 7.2). All the FN cases of the Selection sorts (17%) occurred

due to the difference between the numbers of the numerical characteristics.

Note that the FP cases reported for Quicksort and Mergesort in Table 7.2 could also

be assigned to those algorithms not belonging to the target set that has been falsely recog-

nized as Quicksort and Mergesort, that is, to the corresponding Quickselect and Heapsort

algorithms, respectively. However, since these Quickselect and Heapsort algorithms belong

to the Other algorithms, and listing all the algorithms that are members of the Other algo-

rithms in the table is not practical, the FP case are discussed in connection with Quicksort

and Mergesort algorithms which are members of the target set algorithms shown in Table

7.2.

By manually verifying those FN cases that have occurred because of the different num-

bers of their numerical characteristics, and by assigning the right type to them in the

database, the number of the true positive cases will increase and the number of the false

negative cases will decrease dramatically. This will extend the knowledge base of the Ana-

lyzer so that in the future, it will recognize the same FN cases correctly. This will result in

a substantial improvement in the performance of the Analyzer. However, as we will discuss

in Chapter 8, this could potentially cause also the FP cases to increase.
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Class Recursive Tail recursive In-place MWH TEMP OIID IITO
Insertion 0.0 0.0 100.0 0.0 100.0 100.0 92.3
Selection 0.0 0.0 100.0 100.0 100.0 2.3 65.1
Bubble 0.0 0.0 100.0 0.0 100.0 16.6 0.0
Quick 100.0 100.0 100.0 0.0 64.1 N/A N/A
Merge 100.0 0.0 48.5 0.0 12.1 N/A N/A

Table 7.3: The percentage of the distribution of the descriptive characteristics of the five
sorting algorithms in the data set (see Table 6.2 for the explanation of the abbreviations.
For Quicksort and Mergesort algorithms, OIID and IITO are not applicable) (from [P3])

7.2 C4.5 decision tree experiment

In this section, we first describe the data set used in the CDT-experiment, following by the

description of the decision tree constructed by the C4.5 algorithm and its empirical evalua-

tion using leave-one-out cross-validation technique. The goal of conducting this experiment

is to automatize the construction of the decision tree used in recognizing the five types of

sorting algorithms and to see how different the steps in the resulted automatic decision tree

are compared with the manually constructed decision tree illustrated in Figure 7.1. In other

word, what characteristics the automatic decision tree will use as the tests in its nodes and

how it distinguishes between the Insertion sort, Bubble sort, Selection sort, Quicksort and

Mergesort algorithms.

7.2.1 Data set

For the CDT-experiment, we collected a total of 209 sorting algorithms of the aforemen-

tioned five types. The process of data collection and preparation and the sources where the

data was collected were similar to those described in Subsection 7.1.1. The number and

the percentage of each type of the collected sorting algorithm in the data set are as follows:

Insertion sort 52 (25%), Bubble sort 42 (20%), Selection sort 43 (20%), Quicksort 39 (19%)

and Mergesort 33 (16%).

Because the main purpose of this experiment is to see how the C4.5 algorithm distin-

guishes between the sorting algorithms (i.e., what characteristics the C4.5 algorithm uses

to construct the decision tree), the Other algorithms was left out from the data set, and

only the five aforementioned sorting algorithms were used. After making sure that the

algorithms were correct and of the claimed type, they were run by the Analyzer and the

resulted characteristic vectors were stored in the database. The numerical characteristics of

these algorithms are shown in Chapter 6 in the second row of Table 6.3 and the descriptive

characteristics are shown in Table 7.3.

In order to use the descriptive characteristics as inputs to the C4.5 algorithms, we con-
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Figure 7.4: Decision tree built by the C4.5 algorithm for classifying sorting algorithms in
the CDT-experience (See Table 6.1 for explanation of the abbreviations) (from [P3])

verted them into binary values, 1 indicating the presence of the corresponding characteristic

and 0 indicating its absence. Table 7.3 shows how good classifiers these descriptive charac-

teristics are, specially Recursive, Tail recursive and Most-Wanted Holder role (MWH). The

characteristic Recursive can perfectly discriminate all the instances of Insertion sort, Selec-

tion sort and Bubble sort from Quicksort and Mergesort in the data set. Tail recursion, on

the other hand completely distinguishes the Quicksorts from the Mergesorts. The existence

of MWH in the algorithms is an excellent classifier as well, and can differentiate between

Selection sort algorithms and the four other types of the sorting algorithms. As we will see,

the decision tree that the C4.5 algorithm builds makes use of these exact characteristics. As

illustrated in Table 7.3, the characteristics OIID and IITO (see Table 6.2 for the description

of these characteristics) are not counted for the Quicksort and Mergesort algorithms. This

is because either the implementations of these algorithms do not have two nested loops, or

these characteristics are not good classifiers in these cases. However, as we will explain

later, IITO is an important classifier for separating the Insertion sorts from the Bubble sorts.
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7.2.2 Decision tree constructed by the C4.5 algorithm

The decision tree constructed by the C4.5 algorithm2 is illustrated in Figure 7.4. The in-

ternal nodes are depicted as ellipses and include the tests based on which the splits are

performed. There are four internal nodes (including the root), and thus, the value of four

characteristics are used for the tests. The tree includes five leaves, which correspond to the

number of the classes, that is, the types of the sorting algorithms. Each leaf is labeled with

the associated type. The arcs in Figure 7.4 are labeled with either 0 or 1 from each internal

node to its children. These values indicate the outcome of the test performed in each cor-

responding internal node. We do not go through the internal nodes and the test performed

therein, as the corresponding nodes and tests were explained in connection with the manual

decision tree presented in Figure 7.1.

The C4.5 algorithm tries to minimize the depth of the tree and classify the instances

using the minimum number of characteristics which give the best result. Hence, from all

the characteristics, only four are used in the decision tree. As the task includes the clas-

sification of the five sorting algorithms, the decision tree is not so complicated and thus,

many characteristics remain unused. In a more complex decision tree, more characteristics

are expected to be used in the process. Moreover, although four characteristics are enough

to build the decision tree, different values of the characteristics result in different charac-

teristics to be used and different tests to be performed. In order to test this and experience

how the C4.5 algorithm reacts to the different values of the used characteristics, and how

different values of the used characteristics affect the resulted decision tree, we made some

very minor changes to the values of some characteristics and ran the C4.5 algorithm with

these changed values. It was interesting to see that these minor changes in the value of a

single characteristic resulted in a very different tree. As a concrete example, we performed

a test where we changed the value of the characteristic Recursive to be 0 for one single

Mergesort. The resulted tree used MWH as the test attribute in the root and number of

operands as a test in an internal node, among the other differences.

By analyzing and comparing the values of the numerical and descriptive characteristics

presented in Tables 6.3 (second row) and 7.3 respectively, it becomes clear why the four

aforementioned characteristics are used as the classifiers in the tree. The numerical charac-

teristics of the algorithms, although clearly different, are not the most useful characteristics

in discriminating between the algorithms, when compared with the four used descriptive

characteristics. Similarly, from the descriptive characteristics, In-place, TEMP and OIID

have less discriminating values than those used in the decision tree.

It should be noted that the decision tree of Figure 7.4 only demonstrates how the five

sorting algorithms can be recognized and distinguished from each other. The original pur-

2We used J48, which is an open source Java implementation of the C4.5 algorithm in the Weka data mining
software, developed at the University of Waikato. URL:http://www.cs.waikato.ac.nz/˜ml/weka/

http://www.cs.waikato.ac.nz/~ml/weka/
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pose of constructing the decision tree and conducting the CDT-experiment was to automate

the construction of the decision tree of Figure 7.1 and thus enhance the method. The auto-

mated tree is not intended to cover and be capable of classifying other fields of algorithms.

When we extend our method to cover other algorithms in future work, the tree will have

a mechanism to distinguish, as an example, between tail-recursive algorithms (as opposed

to the decision tree of Figure 7.4 which classifies any given tail-recursive program as a

Quicksort). In a more complex decision tree built to classify a more extensive field of al-

gorithms, the numerical characteristics, for example, can be used to distinguish between

different types of algorithms that share other common characteristics (e.g., characteristic

such as being tail-recursive).

7.2.3 Evaluation of the decision tree

In this subsection we discuss the empirical evaluation of the performance of the decision

tree and present the results.

There exist various techniques to evaluate the performance of decision trees. Cross-

validation is a widely used technique, where the data set is divided into N subsets, which

include both the training set and the test set. N different model of decision tree is con-

structed. Every time the decision tree is constructed, N−1 subsets are used as training set

and one subset is used as test set to estimate the accuracy of the constructed tree. Thus, all

of the subsets are used as the test set, and each of them exactly once. Cross-validation has

two important advantages. First, it makes the best use of the available data (compare with

holdout technique presented in the MDT-experiment, where the data set is divided into the

mutually independent training and test set). Second, since all subsets take part in both train-

ing and test set, instances of data set are distributed uniformly to training and test sets. This

eliminates the risk of getting a poor accuracy value for the tree just because of the unseen

instances of the test set happen to vary largely from the instances of the training set [44].

Most commonly used value for N in cross-validation evaluation is 10. Leave-one-out

cross-validation, that is the evaluation method which we used, is a special case of cross-

validation, where N is equal to the number of instances in the data set. This makes even

better use of data set when the available data is not large. Clearly, the disadvantage of leave-

one-out cross-validation is that it can be computationally expensive for large data sets. As

described, our data set is relatively small and therefore, we decided to use this technique to

estimate the performance of the decision tree. With 209 algorithms of our data set, we get

the training-test subsets created 209 times.

The accuracy of the decision tree evaluated by leave-one-out cross-validation technique

is 97.1%. In other words, from the 209 algorithms of the data set, a total of 203 are classified

correctly, and six of them (2.9%) are misclassified. Table 7.4 shows the overall results.

The first and the second columns in the table show the type and the total number of the
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Class Total TP TN FP FN TPR TNR FPR FNR
Insertion sort 52 48 0 0 4 92.3% 0% 0% 7.7%
Bubble sort 42 40 0 0 2 95.2% 0% 0% 4.8%
Selection sort 43 43 0 0 0 100% 0% 0% 0%
Quicksort 39 39 0 0 0 100% 0% 0% 0%
Mergesort 33 33 0 0 0 100% 0% 0% 0%

Table 7.4: The value of the metrics indicating the accuracy of the decision tree

algorithms, respectively. The next four columns show the values of True Positive (TP),

True Negative (TN), False Positive (FP) and False Negative (FN) cases. TP cases are the

number of correctly classified algorithms of each class, and FN cases show the number

of misclassified algorithms of each class. Note that, as can be seen in the table, since all

the algorithms of the data set used in the experiment are a member of the target set (i.e.,

there are no Other algorithms in the data set as were in the MDT-experiment, and all the

algorithms belong to a class of the five aforementioned sorting algorithms), TN cases do

not occur in the experience. In other words, there are no non-sorting algorithms within the

data set that could be correctly recognized as such. For the same reason, FP cases do not

occur in the experiment neither, that is, there are no non-sorting algorithms within the data

set that could be falsely recognized as a sorting algorithm of the target set.

The four last columns show the value of True Positive Rate (TPR), True Negative Rate

(TNR), False Positive Rate (FPR) and False Negative Rate (FNR) [53]. TPR and FNR were

defined before in Subsection 7.1.3: TPR is the proportion of the positive case algorithms

that are correctly captured by the decision tree (TPR = TP/(TP + FN)) and FNR is the

proportion of the positive case algorithms that are incorrectly labeled as a negative case

(FNR = FN/(TP + FN)). Correspondingly, TNR is the proportion of the negative case al-

gorithms that are correctly predicted (TNR = TN/(TN + FP)), and FPR is the proportion of

the negative case algorithms that are incorrectly labeled as a positive case (FPR = FP/(TN

+ FP)).

As can be seen from Table 7.4, from the six misclassified algorithms, four pertains to

Insertion sort algorithms and two to Bubble sort algorithms. We use the confusion matrix to

discuss the misclassified algorithms in more detail. The confusion matrix is a N × N matrix,

where each instance Ii j indicates the instance that belongs to class Ii, but is classified as class

I j [53]. The instances located on the diagonal are classified correctly. We have five classes

of algorithms, thus 5 × 5 confusion matrix, as shown in Table 7.5 (were the first column

is the class of the algorithms). As the confusion matrix shows, all the four misclassified

Insertion sorts are labeled as Bubble sort and both misclassified Bubble sorts are predicted

as Insertion sort. All the instances of the three other classes, Quicksort, Mergesort and

Selection sort are classified correctly.
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Class Insertion sort Bubble sort Selection sort Quicksort Mergesort
Insertion sort 48 4 0 0 0
Bubble sort 2 40 0 0 0
Selection sort 0 0 43 0 0
Quicksort 0 0 0 39 0
Mergesort 0 0 0 0 33

Table 7.5: The confusion matrix of evaluating the decision tree by leave-one-out cross-
validation technique

The decision tree constructed by the C4.5 algorithm is much more optimal, simple

and comprehensible than the manually constructed decision tree illustrated by Figure 7.1.

Moreover, although building a manual decision tree for classifying the five sorting algo-

rithms with a reasonable performance is a feasible task (as shown in the MDT-experiment),

automating the process of building the decision tree for classifying a more comprehensive

field of algorithms is inevitable. We will discuss the manual and automatic decision trees,

their differences and the issues related to their accuracy in more detail in the next chapter.



Chapter 8

Discussion, Conclusion and Future
Work

In this chapter, we first discuss some issues related to the algorithm recognition process.

Then we present some conclusions about the work, and finally, we explain some direction

for future research.

8.1 Discussion

We have presented a method for recognizing basic algorithms. The method analyzes algo-

rithms with regard to language constructs, software metrics and roles of variables, computes

a set of numerical and descriptive characteristics and converts the algorithms into vectors

of characteristics. These vectors are used to distinguish between different algorithms.

To limit the scope of the work, we tested the method on sorting algorithms. We con-

ducted two separate experiments to investigate how the method performs in recognizing

Insertion sort, Bubble sort, Selection sort, Quicksort and Mergesort algorithms. In the first

experiment, based on the analysis of the algorithms in the learning data, a manual decision

tree was constructed to guide the process of recognition. In the second experiment, the

decision tree was constructed by the C4.5 algorithm.

8.1.1 The manual and automatic decision trees

The numerical characteristics work as filters in the manual decision tree and have a signif-

icant role in the process of recognition. They prevent the algorithms that are not part of

the target algorithms from being further processed and label them as Unknown (see Figure

7.1). If the values of the numerical characteristics are too tight (i.e., if the minimum and

maximum limits of the values of the numerical characteristics are too close to each other),

the number of the false negative cases, that is, the number of the positive case algorithms

53
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that belong to the target set but are falsely recognized as negative cases, will increase. On

the other hand, if the minimum and maximum limits of the values of the numerical char-

acteristics are too far from each others, the number of the false positive cases, that is, the

number of the negative case algorithms that do not belong to the target set but are falsely

recognized as positive cases, will increase (note that if a negative case algorithm passes

the filters of the numerical characteristics, it ends up to be labeled as a false positive case).

Therefore, like in all machine learning techniques, the choice of the training data is crucial

and affects on the results in terms of the false negative and false positive cases.

It should be noted that as the purpose of constructing the automatic decision tree has

been to demonstrate the feasibility of machine learning methods in constructing the decision

tree and to show how the five analyzed sorting algorithms can be distinguished from each

others using the automatic decision tree constructed by the C4.5 algorithm, the automatic

decision tree illustrated by Figure 7.4 has only a mechanism to recognize the five analyzed

sorting algorithms, and shows a more optimal, logical and understandable way to do this

(in comparison with the manual decision tree of Figure 7.1). The automatic decision tree

minimizes the depth of the tree. It distinguishes between the Quicksort and Mergesort

algorithms only based on the “Tail recursive” characteristic, and removes the internal nodes

that include “Temporary role” and “In-place” tests, as redundant. Likewise, it removes the

node containing the “OIID” test as unnecessary and discriminates between the Insertion

sort and Bubble sort algorithms only based on the characteristic “IITO” (see Figures 7.1

and 7.4). Thus, the resulted tree is more logical and understandable.

The accuracy of the manual and automatic decision trees cannot be directly compared

since the data sets used to evaluate their accuracy are different. The testing data of the man-

ual decision tree experiment includes the Other algorithms in addition to the five sorting

algorithms, whereas the data set of the automatic decision tree experiment includes only

the five sorting algorithms (and the tree has no filtering mechanism to deal with other algo-

rithms). Moreover, the methods used for evaluating the accuracy of the trees are different

(Holdout method for the manual decision tree with 70 sorting algorithms as the learning

data and 217 sorting and other algorithms as the testing data, as opposed to leave-one-out

cross-validation for the automatic decision tree with a data set consisting of 209 sorting

algorithms). To provide a more similar conditions that allow us to do this comparison, we

removed the Other algorithms from the testing data of the manual decision tree and eval-

uated the accuracy of the tree using only the five sorting algorithms, as is the case in the

automatic decision tree experiment. Note that as there are 78 Other algorithms in the testing

data, removing them will result in a testing data consisting of 139 sorting algorithms. Thus,

the number of algorithms that are used to evaluate the accuracy of the two decision trees

are still not similar, but removing the Other algorithms provide more reasonable foundation

to do the comparison. Using 139 sorting algorithms of the aforementioned five types as the
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testing data, the accuracy of the manual decision tree is 79% (i.e., 110 true positive cases).

Removing the Other algorithms eliminates all the 76 true negative cases, which constituted

35% of the overall results, and the two false positive cases, which was 1% of the overall

results (see Figure 7.2). The proportion of false negative cases (the 29 false negative cases)

rises from 13% to 21% (see Figure 7.2). These data provide a more reasonable basis to

compare the accuracy of the manual decision tree (79%) with the accuracy of the automatic

decision tree (i.e., 97.1%) and conclude that using machine learning methods results in a

decision tree that performs better.

8.1.2 Application of the method/Analyzer

The main application of the method in its present state is in computer science education.

In algorithms and programming courses, students are required to write several programs

in order to pass the course. These programs usually implement some basic algorithms.

For example, when teaching sorting algorithms, a teacher may ask students to implement

Insertion sort, Quicksort, Mergesort, etc. Since the existing automatic assessment tools are

not capable of easily and reliably recognizing the algorithms that perform the same task

(i.e., sorting in our example), these works must be checked manually. However, this is a

time-consuming task especially in large courses. The Analyzer can be used to automatically

assess these kind of works. Although due to the statistical nature of the method, its accuracy

is not 100%, the results reported in Chapter 7 show that it can help marking students’

programs.

Note that as all the algorithms are stored in the database, a teacher can always check

the failed algorithms (labeled as Unknown in the database) to ensure that they are indeed

not the type which was required from students. For example, if the submitted program is

expected to be a Quicksort, the teacher would inspect the negative cases to either confirm

that the program is indeed not a Quicksort algorithm (a true negative case), or to correct

the type of the algorithm in the database if it is (a false negative case), so that the Analyzer

would recognize the similar algorithm correctly in the future. In this context, false positive

cases – although they occur less than false negative cases – are more difficult to track and

thus more serious problems. If a wrong algorithm is classified as Quicksort (a false positive

case), this will not be discovered since the teacher accepts the positive cases and does not

inspect them (see [P2] for more detailed information). It should also be noted that if a

legitimate algorithm is falsely labeled as Unknown because of its numerical characteristics

not being withing the permitted limit (i.e., a false negative case), correcting the type of the

algorithm in the database should be done with care. The reason is that, as discussed above,

doing so would mean that a wider range of algorithms would pass the filter of the numerical

characteristics in the future, and this would potentially increase the number of false positive

cases.
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8.1.3 Roles of variables (RoV)

The importance of beacon in Program Comprehension (PC) models was discussed in Chap-

ter 4. An initial discussion on how RoV can be seen as beacons was also presented in

that chapter. This beacon-like notion of RoV is apparent in decision trees illustrated in

Figures 7.1 and 7.4. As an example, when a programmer reads code that implements a

non-recursive sorting algorithm, appearance of the most-wanted holder role in the code can

help him/her to accept his/her hypothesis that the algorithm is a Selection sort (see Figures

7.1 and 7.4).

A multidisciplinary study linking PC research field to computing education research

field can help to understand the beacon-like notion of RoV. As an example of PC models,

Soloway and Ehrlich’s model suggest that to facilitate comprehension of programs, vari-

ables should be used in a stereotypical manner and with consideration of the good rules of

programming discourse. For example, “variable names should reflect function” [50]. RoV,

on the other hand, “are a classification of stereotypical behaviours of variables that occur

repeatedly in programs” [46]. Assuming that function and behavior from the two quotes

above imply the same concept, beacon-like notion of RoV become evident (indeed, as was

discussed in Chapter 4, Soloway and Ehrlich use the term critical line instead of beacon, but

we argue that these terms has the same meaning in the context of our discussion and thus

can be used interchangeably. Compare the notion of critical lines with beacons in, for ex-

ample, [7]). While PC models are focused on perspectives such as how experts understand

program code, what are the differences between novices and experts in PC process, what

strategies are most effective in PC, etc., and aim at finding models to help programmers

and maintainers in software engineering activities, RoV are introduced in the context of

computer science education and are considered as a concept to help novices to understand

the notion of variable and to learn programming. In [49], an attempt has been made to bring

PC research field closer to computer science education field. In that work, based on ana-

lyzing several PC models, a number of suggestions is made to computer science educators

as to what kind of learning tasks should be given to student, what are learning obstacles

and how they should be dealt with, what teaching methods should be used, etc., in order to

help students to learn programming more effectively and comprehend programs better. Fur-

thermore, building domain knowledge and extensive knowledge base is also suggested and

it is argued that learning tasks and sequences should be so that they support building this

knowledge. In this regard, viewing RoV as beacons and introducing them to students from

this perspective supports the process of building knowledge base and enhance the ability of

students to understand program code. The usefulness of RoV in introductory programming

education has been investigated in many studies and the results show that using RoV can

increase students’ skills in comprehending and constructing programs (see, e.g., [10, 47], as

well as [51] for information from a teachers’ point of view). An attempt in the reverse direc-
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tion can be made by using RoV as beacons in PC field: bringing a concept from computer

science education field into PC research field. Programmers and maintainers, both novices

and experts, can utilize RoV in PC process in software engineering activities. Since RoV

are tacit knowledge of experts [45], it should be easy for experts to adopt the concept of

RoV even if roles are not explicitly introduced to them yet. For novices, understanding

RoV and identifying them so that roles can improve PC process may require some effort in

the beginning. However, learning the concepts and elements of PC models, such as plans,

beacons, code navigating strategy, etc., is also a part of the process of becoming an expert,

just like learning RoV.

Based on the experiments presented in Chapter 7, RoV are also very useful in algorithm

recognition (AR). However, the value of RoV in AR, as part of automatic program compre-

hension, remains to be further investigated when other fields of algorithms are taken into

the process. There are two concerns for applicability of RoV in automatic program com-

prehension field. The first is, as the different types and fields of algorithms are taken into

the process, how distinguishing RoV would be if the same role appears in many different

algorithms? The second concern is the fact that RoV are cognitive concepts [5, 17]. How

accurately a tool can detect roles if the target algorithm set includes several different roles,

and how these detected roles agree with those assigned by a human? See [P2] for a more

detailed discussion on these issues and some suggestions on how to deal with them.

8.1.4 Limitations of the method

The performance of the method has been evaluated by sorting algorithms. To obtain a

more comprehensive results, we need to further develop the method to cover other fields of

algorithms and evaluate its performance using a wider range of the basic algorithms. We

discuss this issue in the following when we give some direction for future work.

In its current state, the method is not able to identify the code that is not related to

the implementation of an algorithm. All program code is dealt with as algorithmic code,

and thus the method should be further developed to extract the algorithmic code from the

application-specific code. One way to address this problem is to define the supported al-

gorithms as schemas, specify the relationship between these schemas and store them in the

database. Correspondingly, the target algorithms can be converted into schemas and rela-

tionships, and be compared to those from the database in order to identify the algorithmic

code from the source code. This approach is used in knowledge-based PC techniques dis-

cussed in Chapter 3. When the algorithmic code is located in the source code, it can be

highlighted using software visualization techniques to help the user observe it.

The method assumes that target algorithms work correctly. Assessing the correctness

of an algorithm requires it to be executed and is out of the scope of our work. There exist

number of different tools that are capable of assessing the correctness of programs. They
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can be integrated into the Analyzer so that after the target algorithm is recognized by the

Analyzer, its correctness is assessed by an assessment tool. Alternatively, if the output of

the automatic assessment tool can facilitate the recognizing process, the assessment of the

correctness of an algorithm can be carried out before its recognition.

8.2 Conclusion

In this section, we present a few conclusions which are drawn based upon the experiments

presented in Chapter 7 and are connected with the research questions stated in Chapter 1.

See the original articles [P1, P2, P3] for more conclusions.

8.2.1 Feasibility of the method

The results of the experiments presented in Chapter 7 show the feasibility of the method and

good performance of the decision trees. In the first experiment, 86% of the algorithms of the

testing data were recognized correctly (the true positive and true negative cases), and as was

discussed above, using a testing data that consist of only the five aforementioned types of

sorting algorithms, the percent of the correctly recognized algorithms was 79%. Evaluated

by leave-one-out cross-validation technique, the decision tree of the second experiment was

able to correctly recognize 97.1% of the algorithms of the data set correctly. These results

show both the applicability of RoV (the first research question), and the algorithm charac-

teristics (the second research question). RoV distinctively describe some sorting algorithms

used in the experiments. Other characteristics also help to differentiate between those algo-

rithms that cannot be distinguished based on RoV. Indeed, these conclusion are drawn based

upon the experiments conducted on sorting algorithms. In order to show the performance

of the method (including both applicability of RoV and the other characteristics) on other

types of algorithms, corresponding experiments must be conducted.

8.2.2 Applicability of machine learning techniques

Converting algorithms to characteristics vectors allows us to utilize machine learning tech-

niques in our method. Using the C4.5 decision tree classifier in our second experiment

presented in Chapter 7 and the performance of the constructed decision tree shown in the

results therein (see also [P3]) illustrate the applicability of the C4.5 algorithm as a ma-

chine learning method. This provides the answer to our third research question presented

in Chapter 1. We believe that other machine learning techniques can also be applied in

our method as we extend the method to cover other fields of algorithms. The applicabil-

ity of other machine learning techniques, however, needs to be proved by the appropriate

empirical experiments.
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8.3 Future work

The method we have presented needs to be further developed to cover other fields of al-

gorithms and to be able to deal with the other limitations. We elaborate on these research

directions in the following.

8.3.1 Covering other algorithms

The next step to further develop the method is to extend it to cover also other algorithms

than sorting algorithms. We need to analyze other fields of basic algorithms (searching al-

gorithms, tree and graph algorithms, etc.) and evaluate empirically, whether the presented

numerical and descriptive characteristics are sufficient for them to be distinguished and

identified. We may need to look for other distinguishing factors and/or drop some of the

current characteristics as redundant. Furthermore, we need to determine what do we con-

sider to be an algorithmic code that belongs to the core algorithm. As an example, Prim’s

algorithm for computing minimum-cost spanning tree needs an instance of a graph as input.

Should the graph be taken into account when calculating the characteristics for Prim’s algo-

rithm? Moreover, we need to come up with a mechanism to deal with the fact that the more

complex algorithms get, the more they may vary in implementation. Using the same exam-

ple, in Prim’s algorithm, the next closest vertex can be stored in an array, or alternatively a

priority queue can be used for that.

Particularly, we need to analyze the variables used in other target algorithms and inves-

tigate what role they play. As the roles are cognitive concepts, more than one person should

take part in this activity to make sure that the assigned roles are correct. We probably need

to further tune the automatic role detector that we used in order to detect other roles with a

reasonable accuracy. Moreover, other data mining and machine learning techniques should

be used and their applicability and accuracy should be empirically evaluated and compared.

Specifically, we will use K-mean clustering to divide the algorithms based on their charac-

teristics at a high level, and will further examine the clusters in more detail to identify the

algorithms. Self-organizing map also seems to be a good alternative method to classify and

recognize algorithms.

As discussed in Subsection 8.1.4, another direction for future work is how to deal with

application data and identify algorithmic code from source code. See the discussion there

for more information about our plans to tackle this problem.
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