A!

Aalto University
School of Science
and Technology

SPARQL to SQL Translation Based on an
Intermediate Query Language

Sami Kiminki, Jussi Knuuttila and Vesa Hirvisalo

Department of Computer Science and Engineering
Aalto University, School of Science and Technology
sami.kiminki@aalto.fi

November 8th, 2010

Introduction

The setup

» RDF graph stored into an SQL database
» RDF graph is queried by SPARQL queries
» For efficient evaluation, translate SPARQL into SQL

» To reduce round-trips and to allow more SQL DB
optimization, should be 1 x SPARQL — 1 x SQL translation

» We want schema flexibility
» We know from benchmarks that one schema does not fit all
» We want query optimization

» |t's not that we don’t trust the databases
» But sometimes we can do better

Examples are translated using Type-ARQUE 0.2

School of S 0-11-08

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A Science 201
B and Technology 2120

Translation Overview

The familiar approach

» SPARQL to SPARQL
algebra

» Simplify, normalize

» SPARQL algebra to
SQL

Our approach
SPARQL to IL

v

Optimize
Specialize
IL to SQL

vV v v Vv

Simplify, normalize, transform

AQL (Abstract Query Language) is

our IL (Intermediate language)

A' Aallo Unlverslty
ol of S
1 T hnology

SPARQL to SQL Translation Based on an Intermediate Query Language
20

10-11-08

320

Why Intermediate Query Language and not
SPARQL algebra?

» SPARQL algebra defines the SPARQL semantics
» But it is not designed specifically for SPARQL-to-SQL
translation
» Intermediate query language can be designed specifically
for SPARQL-to-SQL
» May operate on lower-level and simpler semantics
» Additional translate-time information may be easily attached
» More powerful transformations can be used for, e.g.,
optimizations
» To emphasize: focus on a single task
» Side note
» Similar shift has happened in computer program compilers
(syntax-directed to IR-based)

of S 08

A' Aal(o Umvers“y SPARQL to SQL Translation Based on an Intermediate QueryzLauguage
ol
d Te hnology 420

Contents of the Rest of the Talk

For reference:
Type-ARQUE translation passes

» AQL Semantics
» Basics, joins, expressions
Type inference
SPARQL to AQL translation
» Variable binding
AQL transformations / lowering

» Nested join flattening
(postponed after conclusions)

» Triple component access
resolution

AQL to SQL
Conclusions

vV Yy

v

v

v

SPARQL
front-end

SPARQL parse to AST
AST normalize
Variable binding
Generate AQL

General
preparation

Normalization passes
Type inference

Empty type sets to nulls
Nested join flattening
Comparison optimization
Function variant selection

Specialization

Property value requirer
Triple access resolution
Expression optimization
Function variant selection
Typecast injection

AQL to SQL

SQL access collection
SQL emit

Aalto University
School of Science
B and Technology

SPARQL to SQL Translation Based on an Intermediate Query Language
201

0-11-08
5/20

Contents of the Rest of the Talk

For reference:
Type-ARQUE translation passes

» AQL Semantics
» Basics, joins, expressions
Type inference
SPARQL to AQL translation
» Variable binding
AQL transformations / lowering

» Nested join flattening
(postponed after conclusions)

» Triple component access
resolution

AQL to SQL
Conclusions

vV Yy

v

v

v

SPARQL
front-end

SPARQL parse to AST
AST normalize
Variable binding
Generate AQL

General
preparation

Normalization passes
Type inference

Empty type sets to nulls
Nested join flattening
Comparison optimization
Function variant selection

Specialization

Property value requirer
Triple access resolution
Expression optimization
Function variant selection
Typecast injection

AQL to SQL

SQL access collection
SQL emit

Aalto University
School of Science
B and Technology

SPARQL to SQL Translation Based on an Intermediate Query Language
201

0-11-08
5/20

Contents of the Rest of the Talk

For reference:
Type-ARQUE translation passes

» AQL Semantics
» Basics, joins, expressions
Type inference
SPARQL to AQL translation
» Variable binding
AQL transformations / lowering

» Nested join flattening
(postponed after conclusions)

» Triple component access
resolution

AQL to SQL
Conclusions

vV Yy

v

v

v

SPARQL
front-end

SPARQL parse to AST
AST normalize
Variable binding
Generate AQL

General
preparation

Normalization passes
Type inference

Empty type sets to nulls
Nested join flattening
Comparison optimization
Function variant selection

Specialization

Property value requirer
Triple access resolution
Expression optimization
Function variant selection
Typecast injection

AQL to SQL

SQL access collection
SQL emit

Aalto University
School of Science
B and Technology

SPARQL to SQL Translation Based on an Intermediate Query Language
201

0-11-08
5/20

Contents of the Rest of the Talk

For reference:
Type-ARQUE translation passes

» AQL Semantics
» Basics, joins, expressions
Type inference
SPARQL to AQL translation
» Variable binding
AQL transformations / lowering

» Nested join flattening
(postponed after conclusions)

» Triple component access
resolution

AQL to SQL
Conclusions

vV Yy

v

v

v

SPARQL
front-end

SPARQL parse to AST
AST normalize
Variable binding
Generate AQL

General
preparation

Normalization passes
Type inference

Empty type sets to nulls
Nested join flattening
Comparison optimization
Function variant selection

Specialization

Property value requirer
Triple access resolution
Expression optimization
Function variant selection
Typecast injection

AQL to SQL

SQL access collection
SQL emit

Aalto University
School of Science
B and Technology

SPARQL to SQL Translation Based on an Intermediate Query Language
201

0-11-08
5/20

Contents of the Rest of the Talk

For reference:
Type-ARQUE translation passes

» AQL Semantics
» Basics, joins, expressions
Type inference
SPARQL to AQL translation
» Variable binding
AQL transformations / lowering

» Nested join flattening
(postponed after conclusions)

» Triple component access
resolution

AQL to SQL
Conclusions

vV Yy

v

v

v

SPARQL
front-end

SPARQL parse to AST
AST normalize
Variable binding
Generate AQL

General
preparation

Normalization passes
Type inference

Empty type sets to nulls
Nested join flattening
Comparison optimization
Function variant selection

Specialization

Property value requirer
Triple access resolution
Expression optimization
Function variant selection
Typecast injection

AQL to SQL

SQL access collection
SQL emit

Aalto University
School of Science
B and Technology

SPARQL to SQL Translation Based on an Intermediate Query Language
201

0-11-08
5/20

Contents of the Rest of the Talk

For reference:
Type-ARQUE translation passes

» AQL Semantics
» Basics, joins, expressions
Type inference
SPARQL to AQL translation
» Variable binding
AQL transformations / lowering

» Nested join flattening
(postponed after conclusions)

» Triple component access
resolution

AQL to SQL
Conclusions

vV Yy

v

v

v

SPARQL
front-end

SPARQL parse to AST
AST normalize
Variable binding
Generate AQL

General
preparation

Normalization passes
Type inference

Empty type sets to nulls
Nested join flattening
Comparison optimization
Function variant selection

Specialization

Property value requirer
Triple access resolution
Expression optimization
Function variant selection
Typecast injection

AQL to SQL

SQL access collection
SQL emit

Aalto University
School of Science
B and Technology

SPARQL to SQL Translation Based on an Intermediate Query Language
201

0-11-08
5/20

Contents of the Rest of the Talk

For reference:
Type-ARQUE translation passes

» AQL Semantics
» Basics, joins, expressions

» Type inference
» SPARQL to AQL translation
» Variable binding
» AQL transformations / lowering
» Nested join flattening
(postponed after conclusions)
» Triple component access
resolution
» AQL to SQL
» Conclusions

SPARQL
front-end

SPARQL parse to AST
AST normalize
Variable binding
Generate AQL

General
preparation

Normalization passes
Type inference

Empty type sets to nulls
Nested join flattening
Comparison optimization
Function variant selection

Specialization

Property value requirer
Triple access resolution
Expression optimization
Function variant selection
Typecast injection

AQL to SQL

SQL access collection
SQL emit

Aalto University
School of Science
B and Technology

SPARQL to SQL Translation Based on an Intermediate Query Language
201

0-11-08
5/20

Contents of the Rest of the Talk

For reference:
Type-ARQUE translation passes

» AQL Semantics
» Basics, joins, expressions
Type inference
SPARQL to AQL translation
» Variable binding
AQL transformations / lowering

» Nested join flattening
(postponed after conclusions)

» Triple component access
resolution

AQL to SQL
Conclusions

vV Yy

v

v

v

SPARQL
front-end

SPARQL parse to AST
AST normalize
Variable binding
Generate AQL

General
preparation

Normalization passes
Type inference

Empty type sets to nulls
Nested join flattening
Comparison optimization
Function variant selection

Specialization

Property value requirer
Triple access resolution
Expression optimization
Function variant selection
Typecast injection

AQL to SQL

SQL access collection
SQL emit

Aalto University
School of Science
B and Technology

SPARQL to SQL Translation Based on an Intermediate Query Language
201

0-11-08
5/20

Contents of the Rest of the Talk

For reference:
Type-ARQUE translation passes

» AQL Semantics
» Basics, joins, expressions
Type inference
SPARQL to AQL translation
» Variable binding
AQL transformations / lowering

» Nested join flattening
(postponed after conclusions)

» Triple component access
resolution

AQL to SQL
Conclusions

vV Yy

v

v

v

SPARQL
front-end

SPARQL parse to AST
AST normalize
Variable binding
Generate AQL

General
preparation

Normalization passes
Type inference

Empty type sets to nulls
Nested join flattening
Comparison optimization
Function variant selection

Specialization

Property value requirer
Triple access resolution
Expression optimization
Function variant selection
Typecast injection

AQL to SQL

SQL access collection
SQL emit

Aalto University
School of Science
B and Technology

SPARQL to SQL Translation Based on an Intermediate Query Language
201

0-11-08
5/20

Contents of the Rest of the Talk

For reference:
Type-ARQUE translation passes

» AQL Semantics
» Basics, joins, expressions
Type inference
SPARQL to AQL translation
» Variable binding
AQL transformations / lowering

» Nested join flattening
(postponed after conclusions)

» Triple component access
resolution

» AQL to SQL
Conclusions

vV Yy

v

v

SPARQL
front-end

SPARQL parse to AST
AST normalize
Variable binding
Generate AQL

General
preparation

Normalization passes
Type inference

Empty type sets to nulls
Nested join flattening
Comparison optimization
Function variant selection

Specialization

Property value requirer
Triple access resolution
Expression optimization
Function variant selection
Typecast injection

AQL to SQL

SQL access collection
SQL emit

Aalto University
School of Science
B and Technology

SPARQL to SQL Translation Based on an Intermediate Query Language
201

0-11-08
5/20

AQL Semantics: Basics

PREFIX p: <.../> (agl-query ("triple_1.1")
SELECT ?a ?c (select "a"
WHERE { (property any "triple_1_1" subject))
7a 7b 7c (select "c"
FILTER(?c = ’Anne’) (property any "triple_1_1" object))
} (criterion
(comp-eq

(property any "triple_1_1" object)
(literal string "Anne"))))

» Explicitly named triples
» Triple component references instead of variables

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A' School of Science 2010-11-08
B and Technology 6/20

AQL Semantics: Basics

PREFIX p: <.../> (agl-query ("triple_1.1")
SELECT ?a ?c (select "a"
WHERE { (property any "triple_1_1" subject))
?7a p:firstname 7c (select "c"
FILTER(?c = ’Anne’) (property any "triple_1_1" object))
} (criterion (and
(comp-eq
(property any "triple_1_1" predicate)
(literal IRI ".../firstname"))
(comp-eq

(property any "triple_1_1" object)
(literal string "Anne")))))

» Unified filters: no difference between FILTERs and triple
match pattern

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A' School of Science 2010-11-08
B and Technology 6/20

AQL Semantics: Joins

SELECT ?a 7c 7e (aql-query ("triple_1.1")

WHERE { (select "a"
7a 7b 7c (property any "triple_1_1" subject))

OPTIONAL { (select "c"
?7c 7d 7e (property any "triple_1_1" object))

} (select "e"
} (property any "triple 2_1" object))

(join left ("triple 2.1")
(comp-eq

(property any "triple_2_1" subject)
(property any "triple_1_1" object)))
(criterion))

» Optional graph group = left join
» Join condition: “outer” ?c == ?c “inner”
» Joins can be nested

Aalto University SPARGL to SQL Translation Based on an Intermediate Query Language
School of Science 2010-11-08
B and Technology 7120

AQL Semantics: Joins

SELECT ?a 7c 7e (agl-query ("triple_1_1")

WHERE { (select "a"
?7a 7b 7c (property any "triple_1_1" subject))

OPTIONAL { (select "c"
7c 7d 7e (property any "triple 11" object))

} (select "e"
} (property any "triple_2_1" object))

(join left ("triple.2.1")
(comp-eq

(property any "triple_2_1" subject)
(property any "triple_1_1" object)))
(criterion))

» Optional graph group = left join
» Join condition: “outer” ?c == ?c “inner”
» Joins can be nested

Aalto University SPARGL to SQL Translation Based on an Intermediate Query Language
School of Science 2010-11-08
B and Technology 7120

AQL Semantics: Joins

SELECT ?a 7c 7e (agl-query ("triple_1_1")

WHERE { (select "a"
7a 7b 7c (property any "triple_1_1" subject))

OPTIONAL { (select "c"
7c 7d 7e (property any "triple 11" object))

} (select "e"
} (property any "triple_2_1" object))

(join left ("triple.2.1")
(comp-eq

(property any "triple_2_1" subject)
(property any "triple_1_1" object)))
(criterion))

» Optional graph group = left join
» Join condition: “outer” ?c == ?c “inner”
» Joins can be nested

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
School of Science 2010-11-08
B and Technology 7120

AQL Join Evaluation Semantics

» Top-to-bottom, recurse before join condition
1. Join the data
2. Recurse into nested joins
3. Apply join condition
» This is different to SPARQL and SQL joins
» SPARQL (currently) and SQL joins are bottom-up
» They are more localized: recurse after applying condition
» The rationale: more triples can be referenced at join
conditions
» AQL joins are a superset of SPARQL and SQL joins

» For both bottom-up or left-to-right variable binding
semantics

fS 2010-11-08

A' Aal(o Un|vers||y SPARQL to SQL Translation Based on an Intermediate Query Language
ol o
JT shnolo gy 620

Join Evaluation Semantics Example
(aql-query ("tri_1" "tri 2") (tri_1.subj=="s1")
(join left ("tri_3") (iri_1.subj==tri_2.subj
AND tri_1.subj==tri_3.subj)))

Empty table
1 rows, 0 columns

Store contains 2 triples:
(s1,p1,01) and (s2,p2,02)

We start from an empty table, which is the identity for Cartesian

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A School of Science 2010-11-08
B and Technology 9/20

Join Evaluation Semantics Example
(agql-query ("tri 1" "tri 2") (tri_1.subj=="s1")
(join left ("tri_3") (iri_1.subj==tri_2.subj

AND tri_1.subj==tri_3.subj)))
ROW tri_1 tri_2
st ipliol | slipl:ol
s p1:of 32:p2:o2
s2 p2:io02|slipl i ol
s2 p2 02 |s2:ip2io02

A OWODN =

Join the triple store once per declared triple in top-level query
using Cartesian product

A' Aal(o Umvers“y SPARQL to SQL Translation Based on an Intermediate Query La nguage
ol of S

0-11-08
d Te hnology 9/20

Join Evaluation Semantics Example
(aql-query ("tri_1" "tri 2") (tri_1.subj=="s1")
(join left ("tri_3") (iri_1.subj==tri_2.subj

AND tri_1.subj==tri_3.subj)))
ROW tri_1 tri_2 tri_3
1a st p1iol|slipliol sl pl:ofl
1b st ' ptiol|stipliol|s2 p2:io02
2a |[sl pliol|s2ip2i02 sl pl:ofl
2b | sl ptliol|s2ip2io02|s2 p2 02
3a |[s2 p2i02|slipliol|sl pl:iol
3b |[s2 p2io2|s1ipliol|s2 p2io02
4a || s2 p2io2|s2ip2io02|sl pliol
4b || s2 p2i02|s2ip2i02|s2 p2:io02

Recurse into joins, still using Cartesian product

A' Aal(o Un|vers||y SPARQL to SQL Translation Based on an Intermediate QueryzLauguagg
ol of S
1 Technolo gy 9/20

Join Evaluation Semantics Example
(aql-query ("tri_1" "tri 2") (tri_1.subj=="s1")
(join left ("tri_3") (iri_1.subj==tri_2.subj
AND tri_1.subj==tri_3.subj)))
ROW tri_1 tri_2 tri_3
1a s1 p1iol|slipliol|sl pl:iol|MATCH
1b st ' ptiol|stipliol|s2 p2:io02
2a |[sl pliol|s2ip2i02 sl pl:ofl
2b | sl ptliol|s2ip2io02|s2 p2 02
3a |[s2 p2i02|slipliol|sl pl:iol
3b |[s2 p2io2|s1ipliol|s2 p2io02
4a || s2 p2io2|s2ip2io02|sl pliol
4b || s2 p2i02|s2ip2i02|s2:ip2:02| MATCH

No more nested joins, evaluate condition

A' Aal(o Umvers“y SPARQL to SQL Translation Based on an Intermediate QueryzLauguagg
ol of S
1 Te hnology 9/20

Join Evaluation Semantics Example
(aql-query ("tri_1" "tri 2") (tri_1.subj=="s1")
(join left ("tri_3") (iri_1.subj==tri_2.subj
AND tri_1.subj==tri_3.subj)))
ROW tri_1 tri_2 tri_3
1a s1 p1iol|slipliol]|sl pl:iol|MATCH
1b || s1 p1iol|slipl:ol <null>
2a ||s1ipliol|s2ip2:io02 <null>
2b | s1 pliol|s2ip2i02| <null>
3a |[s2 p2i02|slipliol <null>
3b |[s2 p2io02|s1ipl:of <null>
4a |s2 p2io2|s2ip2io2| <null>
4p || s2 p2i02|s2ip2io02|s2 p2:o02| MATCH

Replace joined values by nulls in non-matching condition rows

A' Aal(o Umvers“y SPARQL to SQL Translation Based on an Intermediate Query Language
ol of S 2010-11-08
1 Te hnology 920

Join Evaluation Semantics Example
(agql-query ("tri_1" "tri 2") (tri_1.subj=="s1")
(join left ("tri_3") (iri_1.subj==tri_2.subj
AND tri_1.subj==tri_3.subj)))

ROW tri_1 tri_2 tri_3
1a ['s1 pliof[sf pliof[sl pl;of|MATCH
1b s1:pl:ol|sl:pl:ol <null>

2a ||s1ipliol|s2ip2:io02 <null>
2b [|stipliol|s2ip2io02| <null>
3a |[s2 p2i02|slipliol <null>
3b |[s2 :p2io2|slipliol <null>
4a || s2 ip2i02|s2;p2;io02 <null>
4p || s2 p2i02|s2ip2io02|s2 p2:o02| MATCH

Compactify by removing rows which received nulls. However, as
this is LEFT OUTER join, leave at least one instance of original
rows. INNER join would remove also these.

A' Aal(o Umvers“y SPARQL to SQL Translation Based on an Intermediate Query La nguage
ol of S 0-11-08
d Te hnology 9/20

Join Evaluation Semantics Example
(aql-query ("tri_1" "tri 2") (tri_1.subj=="s1")
(join left ("tri_3") (iri_1.subj==tri_2.subj
AND tri_1.subj==tri_3.subj)))
ROW tri_1 tri_2 tri_3
1a st ipl1iol|slipliol|sl:pl:ol
2a | st pliol|s2ip2i02| <null>
3a | s2 p2io02|stlip i ol <null>
4b || s2 p2i02|s2:ip2:io02|s2 p2:o02

Compactify by removing rows which received nulls. However, as
this is LEFT OUTER join, leave at least one instance of original
rows. INNER join would remove also these.

A' Aal(o Umvers“y SPARQL to SQL Translation Based on an Intermediate Query Language
ol of S 2010-1

1-08
11' hnology 920

Join Evaluation Semantics Example
(agql-query ("tri_1" "tri_2") (iri_1.subj=="s1")
(join left ("tri_3") (iri_1.subj==tri_2.subj
AND tri_1.subj==tri_3.subj)))
ROW tri_1 tri_2 tri_3
1a s1 p1iol|slipliol|sl pl:ol|MATCH
2a |[s1 p1iol|s2ip2:o02 <null> MATCH
3a | s2 p2io02|stlip i ol <null>
4b || s2 p2i02|s2ip2io02|s2 p2:o02

Continue upwards by evaluating top-level conditions

A' Aal(o Umvers“y SPARQL to SQL Translation Based on an Intermediate Query Language
ol of S 2010-1

1-08
d Te hnology 920

Join Evaluation Semantics Example
(agql-query ("tri_1" "tri_2") (iri_1.subj=="s1")
(join left ("tri_3") (tri_1.subj==tri_2.subj
AND tri_1.subj==tri_3.subj)))
ROW tri_1 tri_2 tri_3
1a st ptiol|slipliol| sl pil:iol|MATCH
2a |[s1 p1iol|s2ip2:o02 <null> MATCH
3a || s2ip2io2|stip i ol <null>
4b ||s2 ip2i02|s2ip2io02|s2 p2:o02

Compactify by removing non-matching rows

A' Aal(o Unlverslty SPARQL to SQL Translation Based on an Intermediate Query Language
ol of S 201

0-11-08
d Te hnology 9/20

Join Evaluation Semantics Example
(agql-query ("tri_1" "tri_2") (iri_1.subj=="s1")
(join left ("tri_3") (iri_1.subj==tri_2.subj
AND tri_1.subj==tri_3.subj)))
ROW tri_1 tri_2 tri_3
1a st :pltiol|s1ipliol|sl:ipl:iol
2a | st pliol|s2ip2:o02 <null>

Compactify by removing non-matching rows

Aalto University SPARGL to SQL Translation Based on an Intermediate Query Language
School of Science 2010-11-08
B and Technology 9/20

Join Evaluation Semantics Example
(aql-query ("tri_1" "tri 2") (tri_1.subj=="s1")
(join left ("tri_3") (iri_1.subj==tri_2.subj
AND tri_1.subj==tri_3.subj)))
ROW tri_1 tri_2 tri_3
1a st :pltiol|s1ipliol|sl:ipl:iol
2a | st pliol|s2ip2:o02 <null>

Nothing more to do. This is the evaluated solution set. Each row
represents a solution.

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A School of Science 2010-11-08
B and Technology 9/20

AQL Expressions

» Expression classes: literals, triple component expressions
(called property expressions), function expressions
» Explicitly typed
» Triple component expressions and function expressions
have sets of possible types
» In SPARQL, variables may be bound to values of different
types between solutions, too
» Examples
» (property (string integer) "triple_1_1" object)

» (function "builtin:coalesce" (string integer)
(literal string "ABC")
(literal integer 55))

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A School of Science 2010-11-08
B and Technology 10/20

AQL Expressions

» Expression classes: literals, triple component expressions
(called property expressions), function expressions
» Explicitly typed
» Triple component expressions and function expressions
have sets of possible types
» In SPARQL, variables may be bound to values of different
types between solutions, too
» Examples
> (property (string integer) "triple_1.1" object)

» (function "builtin:coalesce" (string integer)
(literal string "ABC")
(literal integer 55))

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A School of Science 2010-11-08
B and Technology 10/20

Type Inference

» Based on join condition analysis (i.e., SPARQL filters and
triple match patterns)
» Motivational example:
SELECT *
WHERE {
?s 7p 7o
FILTER(?0 > 3)

}

For each possible solution:

» ?s and ?p must be IRIs
» 70 must be numeric

» Performed on AQL queries (explicit expression typing)
» Beneficial for later parts of translation

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
School of Science 2010-11-08
B and Technology 11720

Type Inference

» Based on join condition analysis (i.e., SPARQL filters and
triple match patterns)
» Motivational example:
SELECT *
WHERE {
?s 7p 7o
FILTER(?0 > 3)

}

For each possible solution:

» ?s and ?p must be IRIs
» 70 must be numeric

» Performed on AQL queries (explicit expression typing)
» Beneficial for later parts of translation

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
School of Science 2010-11-08
B and Technology 11720

Type Inference

» Based on join condition analysis (i.e., SPARQL filters and
triple match patterns)
» Motivational example:
SELECT *
WHERE {
?s 7p 7o
FILTER(?0 > 3)

}

For each possible solution:

» ?s and ?p must be IRIs
» 70 must be numeric

» Performed on AQL queries (explicit expression typing)
» Beneficial for later parts of translation

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
School of Science 2010-11-08
B and Technology 11720

Type Inference

» Based on join condition analysis (i.e., SPARQL filters and
triple match patterns)
» Motivational example:
SELECT *
WHERE {
?s 7p 7o
FILTER(?0 > 3)

}

For each possible solution:

» ?s and ?p must be IRIs
» 70 must be numeric

» Performed on AQL queries (explicit expression typing)
» Beneficial for later parts of translation

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
School of Science 2010-11-08
B and Technology 11720

Type Inference Algorithm

» Based on two-level dataflow equations:
1. Assume initially that every triple component and function
expression can be of any type
2. Find conflicts and constrain the set of possible types (per
condition expression)
3. Propagate triple component type sets between joins
4. Go back to Step 2 until a fixpoint is found
» As the type sets are always shrinking, a fixpoint is
guaranteed to be reached eventually

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A School of Science 2010-11-08
B and Technology 12/20

Type Inference Example for Condition
(t1.0=5) AND (t1.0>12.0)

STEP 1 STEP 2
AND
_— — T T~
= (?,?):boolean > (?,?):boolean
t1.o E?int t1o t2.0
STEP 3 STEP 4

Figure: lllustration of type inference for a simple expression. Type of

t1.0 has been inferred as and t2.0 as type.
Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A School of Science 2010-11-08
W and Technology 13/20

Type Inference Example for Condition
(t1.0=5) AND (t1.0>12.0)

STEP 1 STEP 2
AND
A0 {11/.9\:in1}
B G - S
tl.0 5:int tl.o t2.0 .
{{1:8552{} 5:int o 2.0
STEP 3 STEP 4

Figure: lllustration of type inference for a simple expression. Type of

t1.0 has been inferred as and t2.0 as type.
Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A' School of Science 2010-11-08
W and Technology 13/20

Type Inference Example for Condition
(t1.0=5) AND (t1.0>12.0)

STEP 1 STEP 2
AND
AND {t1.0:int}
:W ") %boo'ea " — ey > (?,?):boolean
{t1.0:int} o
t1.0 5:int t1.o t2.0 A
t1":'{\S'int t1.0 2.0
{t1.0:int} i . .
STEP 3 STEP 4
AND
{t1.o:int}
////\\\x
= (int,im)/:/b/oolean > (int,nu\m):boolean
{t1.otint} {t1.otint}
t1.otint 5:int t1.0:int t2.0:num

{tl.oiint} {tl.0int} {tt.o:int} {t1.0:int}

Figure: lllustration of type inference for a simple expression. Type of

t1.0 has been inferred as and t2.0 as type.
' Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
Al

Type Inference Example for Condition
(t1.0=5) AND (t1.0>12.0)

STEP 1 STEP 2
AND
AND {t1.0:int}
= (?,?):boolean > (?,7):boolean — (int,int)"bool
/\ A (|n{t|1n'g:inc;? ean > (?,7):boolean
t1o 5int t1o t2.0 /\ A
t1.o:int N
{t1.0'int} 5:int t1.0 2.0
STEP 3 STEP 4
AND AND
{t1.0:int} {t1.0tint, t2.0:num}
//’/// ;*—;
= (int,int):boolean > (int,num):boolean = (int,intj:boolean > (int,num):boolean
{t1.0:int} {t1.0:int} {t1.oint, {t1.oint,
t2.0:num} t2.0:num}

t1.otint 5:int t1.o:int t2.0:num .

{tl.oiint} {tl.oiint} {tl.oiint} {tl.cint} t1.g:int 5:int t1.0tint t2.0'num
{tt.oiint, {tt.oiint, {tt.oiint, {t1.o:int,
t2.0:num} t2.0:num} t2.0:num} t2.0:num}

Figure: lllustration of type inference for a simple expression. Type of
t1.0 has been inferred as integral and t2.0 as general numeric type.

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A' School of Science 2010-11-08
B and Technology 13/20

Translating SPARQL to AQL

Basically straightforward:

» Graph group structure is preserved in AQL join expression
structure

» Triple match patterns are named and the names are
inserted into AQL joins, as triple names

» If match pattern has constraints, add respective conditions
for AQL joins (or the top-level query)

» Add FILTERs as additional constraints to AQL joins (or the
top-level query)

» However, variable dereferencing needs additional
consideration

fS 2010-11-08

' Aal(o Un|vers||y SPARQL to SQL Translation Based on an Intermediate Query Language
ol o
A 1-1 20

11 chn. Igy

SPARQL Variables to AQL Expressions

» The idea: When dereferencing a variable, determine where
it can be bound before the dereference point (per solution)

» If multiple bound options, use coalesce

» If variable is used in a triple match pattern with possible
previous bind, add condition

A' Aal(o Umvers“y SPARQL to SQL Translation Based on an Intermediate Query La nguage
ol of S

0-11-08
dT hnology 15/20

Variables Example
SELECT 7x
WHERE {
7a ?b 7x

}

(agl-query ("triple_1_1")
(select "x" (property any "triple_1_1" object))
(criterion))

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
School of Science 2010-11-08
B and Technology 16/20

Variables Example
SELECT 7x
WHERE {
OPTIONAL { ?c 7d ?x }
7a ?b 7x

}

(agl-query ("triple_1_1")
(select "x" (property any "triple_1_1" object))
(join left ("triple_2_.1"))
(criterion
(or
(function"builtin:is-null" any
(property any "triple_2_1" object))
(comp-eq
(property any "triple_1_1" object)
(property any "triple_2_1" object)))))

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A School of Science 2010-11-08
B and Technology 16/20

Variables Example
SELECT 7x
WHERE {
OPTIONAL { ?c ?7d 7x } OPTIONAL { 7e 7f 7x }
7a ?b 7z

}

(agl-query ("triple_1_1")

(select "x" (function"builtin:coalesce" any
(property any "triple_2_1" object)
(property any "triple_3_1" object)))

(join left ("triple_2.1"))

(join left ("triple_3_-1")

(or
(function"builtin:is-null" any
(property any "triple_2_1" object))
(comp-eq
(property any "triple_3_1" object)
(property any "triple_2_1" object))))
(criterion))

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A School of Science 2010-11-08
B and Technology 16/20

Adapting to SQL Schema: Triple Component
Access Resolution

» Replace schema-agnostic property expressions with
schema-specific low-level expressions

» For faceted schemas, explicit type information of property
expressions is used to determine which value tables are
required

» Example:

(property (double integer) "triple 11" object)
=
(function"builtin:coalesce" (double integer)
(custom (double)
SQLAccessExpr INDEX VCADoubles.{ix: id, value: double_value,
triple-table-column: obj(object)} USING JOIN triple_1.1)
(custom (integer)
SQLAccessExpr INDEX VC,Integers.{ix: id, value: int_value,

triple-table-column: obj(object)} USING JOIN triple_1.1))

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A School of Science 2010-11-08
B and Technology 17720

Adapting to SQL Schema: Triple Component
Access Resolution

» Replace schema-agnostic property expressions with
schema-specific low-level expressions

» For faceted schemas, explicit type information of property
expressions is used to determine which value tables are
required

» Example:

(property (double integer) "triple 11" object)
=
(function"builtin:coalesce" (double integer)
(custom (double)
SQLAccessExpr INDEX VCADoubles.{ix: id, value: double_value,
triple-table-column: obj(object)} USING JOIN triple_1.1)
(custom (integer)
SQLAccessExpr INDEX VC,Integers.{ix: id, value: int_value,

triple-table-column: obj(object)} USING JOIN triple_1.1))

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A' School of Science 2010-11-08
B and Technology 17720

Adapting to SQL Schema: Triple Component
Access Resolution

» Replace schema-agnostic property expressions with
schema-specific low-level expressions

» For faceted schemas, explicit type information of property
expressions is used to determine which value tables are
required

» Example:

(property (double integer) "triple_1_1" object)
=
(function"builtin:coalesce" (double integer)
(custom (double)
SQLAccessExpr INDEX VC_Doubles.{ix: id, value: double_value,
triple-table-column: obj(object)} USING JOIN triple_1.1)
(custom (integer)
SQLAccessExpr INDEX VC_Integers.{ix: id, value: int_value,

triple-table-column: obj(object)} USING JOIN triple 1.1))

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A' School of Science 2010-11-08
B and Technology 17720

Adapting to SQL Schema: Triple Component
Access Resolution

» Replace schema-agnostic property expressions with
schema-specific low-level expressions

» For faceted schemas, explicit type information of property
expressions is used to determine which value tables are
required

» Example:

(property (double integer) "triple 11" object)
=
(function"builtin:coalesce" (double integer)
(custom (double)
SQLAccessExpr INDEX VCADoubles.{ix: id, value: double_value,
triple-table-column: obj(object)} USING JOIN triple_1.1)
(custom (integer)
SQLAccessExpr INDEX VC,Integers.{ix: id, value: int_value,

triple-table-column: obj(object)} USING JOIN triple_1.1))

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A School of Science 2010-11-08
B and Technology 17720

Translating Lowered AQL to SQL

» This is very straightforward
» Join structure is naturally preserved (multiple triples in AQL
joins are joined using CROSS JOIN)
» AQL literal and function expressions are translated into
SQL expressions, usually simple one-to-one translations
» Triple component expressions (AQL property expressions)
are already translated into low-level SQL expressions
» However, not all AQL queries can be translated into legal
SQL queries
» Possible, when we use left-to-right variable binding
semantics in SPARQL
» Partial remedy: nested join flattening. Exemplified in our
paper

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A School of Science 2010-11-08

B and Technology 18/20

Conclusions

» We presented a design for SPARQL-to-SQL translation
using a purpose-built intermediate language
» Intermediate language can provide additional flexibility in
translation. In our case:
» Clean separation of the front-end (SPARQL) and the
back-end (SQL)
» Variable dereferencing—does not result in sub-SELECTS
» Explicit expression typing and type inference based on join
condition analysis
» Untranslatable query detection and remedy by query
translation (left-to-right variable binding semantics only)

» Join flattening is not generally doable in SPARQL (without
further transformations) but easily done in AQL

» Back-end schema flexibility

» See further examples and translator source at
http://esg.cs.hut.fi/software/type-arque/

Aalto University SPARGL to SQL Translation Based on an Intermediate Query Language
School of Science 2010-11-08
B and Technology 19720

http://esg.cs.hut.fi/software/type-arque/

Questions, comments?

More examples after this slide

SPARQL to SQL Translation Based on an Intermediate Query Language
2010-11-08
20/20

Nested Join Flattening

» Nested optional graph patterns with two-levels up
references in FILTERS cannot be translated directly into
SQL (issue only with left-to-right variable binding)

» Consider:

SELECT ?7i

WHERE {
7a ?b 7c
OPTIONAL { 7d 7e ?f

OPTIONAL { ?g ?h ?i FILTER(?c=’123’) }

}

}

» FILTER(?c ...) refersto a variable that is bound
two-levels up (using left-to-right semantics)
» However, in AQL, we can often transform these queries to
equivalent but translatable queries
» This is done by moving the conflicting left joins upwards
and adding additional join conditions

School of Science 0-11-08

A Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
201
B and Technology 21/20

Example: Nested Join Flattening

SELECT 7i
WHERE { ?a ?b ?c OPTIONAL { ?d ?7e ?f OPTIONAL { ?g ?h 7i
FILTER(7c=123") }}}
(aql-query ("tri_i")
(select "i" (property any "tri_3" object))
(join left ("tri_2")
(literal boolean true)
(join left ("tri_-3")
(function"builtin:comp-eq" (boolean)
(property (string) "tri_1" object)
(literal string "123"))))
(criterion))

SELECT tri_3.obj_value AS cO
FROM InlinedTriples AS tri_1
LEFT JOIN (InlinedTriples AS tri 2
LEFT JOIN InlinedTriples AS tri_3 ON tri_1.obj_value=’123’)

Aalto University SPARGL to SQL Translation Based on an Intermediate Query Language
A School of Science 2010-11-08
B and Technology 22/20

Example: Nested Join Flattening

SELECT 7i
WHERE { ?a ?b ?c OPTIONAL { ?d ?7e ?f OPTIONAL { ?g ?h 7i
FILTER(7c=123") }}}
(aql-query ("tri_i")
(select "i" (property any "tri_3" object))
(join left ("tri_2")
(literal boolean true))
(join left ("tri_3")
(and
(function"builtin:comp-eq" (boolean)
(property (string) "tri_i1" object)
(literal string "123"))
(function"builtin:is-not-null" any
(property (reference) "tri 2" subject))))
(criterion))

SELECT tri_3.obj_value AS cO
FROM InlinedTriples AS tri_1
LEFT JOIN InlinedTriples AS tri_2 ON TRUE
LEFT JOIN InlinedTriples AS tri_3 ON
tri_l.obj_value=’123’ AND tri_2.subj_value IS NOT NULL

Aalto University SPARGL to SQL Translation Based on an Intermediate Query Language
A School of Science 2010-11-08
B and Technology 22/20

Example: Type Inference and Value Joins
SPARQL vs AQL

SELECT 7c
WHERE {

7a 7b 7c
}

(agl-query ("triple_1_1")
(select "c"
(property (string IRI double integer boolean datetime)
"triple_1_1" object))
(criterion (literal boolean true))

Aalto University SPARGL to SQL Translation Based on an Intermediate Query Language
A' School of Science 2010-11-08
B and Technology 23120

Example: Type Inference and Value Joins
SPARQL vs AQL

SELECT 7c

WHERE {
7a 7b 7c
FILTER(?c < 30)

}

(agl-query ("triple_1_1")
(select "c"
(property (double integer)
"triple_1_1" object))
(criterion
(function"builtin:comp-1t" (boolean)

(property (double integer) "triple_1_1" object)
(literal integer 30))))

Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A' School of Science 2010-11-08
B and Technology 23/20

Example: Type Inference and Value Joins
SPARQL vs AQL

SELECT 7c
WHERE {
7a 7b 7c
FILTER(?c < 30 || ?c < ’B’)

}

(agl-query ("triple_1_1")
(select "c"
(property (string double integer)
"triple_1_1" object))
(criterion (function"builtin:or" (boolean)
(function"builtin:comp-1t" (boolean)
(property (double integer) "triple_1_1" object)
(literal integer 30))
(function"builtin:comp-1t" (boolean)
(property (string) "triple_1_1" object)
(literal string "B")))))

Aalto University SPARGL to SQL Translation Based on an Intermediate Query Language
A' School of Science 2010-11-08
B and Technology 23120

Example: Type Inference and Value Joins

SQL Schema
Table Description
VC_Triples Triple table. Columns: subj, pred, obj.
Values are id references to value tables.
VC_Strings String value table. Columns: id, str_value.
Contains small strings.
VC BigStrings String value table. Columns: id, text_value.

Contains big strings.

VC_Integers

Integer value table. Columns: id, int_value.

VC_Doubles Double value table. Columns: id, double_value.
VC_Booleans Boolean values. Columns: id, boolean_value.
VCDatetimes Datetime values. Columns: id, datetime_value.

Aalto University
School of Science
B and Technology

SPARQL to SQL Translation Based on an Intermediate Query Lan
201

guage

0-11-08

24/20

Example: Type Inference and Value Joins
SPARQL vs SQL

SELECT 7c
WHERE {

?a 7b 7c
}

SELECT COALESCE(tri_obj_strs.str_value,tri_obj_bstrs.text_value,
tri_obj_VC_IRIs.iri_value,
CAST(tri_obj_dbls.double_value AS TEXT),
CAST(tri_obj_ints.int_value AS TEXT),
aqltosql_boolean_to_text(tri_obj-bools.boolean_value),
aqltosql_timestamp_to_text(tri_obj_dts.datetime_value)) AS cO
FROM VC_Triples AS tri
LEFT JOIN VC_Strings AS tri_obj_strs ON tri_obj_strs.id=tri.obj
LEFT JOIN VC_BigStrings AS tri_obj_bstrs ON tri_obj_bstrs.id=tri.obj
LEFT JOIN VC_IRIs AS tri_obj_VC_IRIs ON tri_obj_VC_IRIs.id=tri.obj
LEFT JOIN VC_Doubles AS tri_obj_dbls ON tri_obj._dbls.id=tri.obj
LEFT JOIN VC_.Integers AS tri_obj_ints ON tri_obj_ints.id=tri.obj
LEFT JOIN VC_Booleans AS tri_obj_bools ON tri_obj_bools.id=tri.obj
LEFT JOIN VC_Datetimes AS tri_obj_dts ON tri_obj_dts.id=tri.obj

WHERE TRUE
Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
A' School of Science 2010-11-08
B and Technology 25/20

Example: Type Inference and Value Joins
SPARQL vs SQL

SELECT ?c
WHERE {
7a 7b 7c
FILTER(7c < 30)
}
SELECT COALESCE(tri_obj_dbls.double_value,tri_obj_ints.int_value) AS cO
FROM VC_Triples AS tri
LEFT JOIN VC_Doubles AS tri_obj_dbls ON tri_obj_dbls.id=tri.obj
LEFT JOIN VC_Integers AS tri_obj_ints ON tri_obj_ints.id=tri.obj
WHERE COALESCE(tri_obj_dbls.double_value,tri_obj_ints.int_value)<30
AND (tri_obj._dbls.double_value IS NOT NULL
OR tri_obj_ints.int_value IS NOT NULL)

School of Science 0-11-08

A Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
201
B and Technology 25/20

Example: Type Inference and Value Joins
SPARQL vs SQL

SELECT 7c
WHERE {
7a 7b 7c
FILTER(?c < 30 || ?c < ’B?)

}

SELECT COALESCE(tri_obj_strs.str_value,tri_obj_bstrs.text_value,
CAST(tri_obj_dbls.double_value AS TEXT),
CAST(tri_obj_ints.int_value AS TEXT)) AS cO

FROM VC_Triples AS tri

LEFT JOIN VC_Strings AS tri_obj_strs ON tri_obj_strs.id=tri.obj
LEFT JOIN VC_BigStrings AS tri_obj bstrs ON tri_obj bstrs.id=tri.obj
LEFT JOIN VC_Doubles AS tri_obj_dbls ON tri_obj._dbls.id=tri.obj
LEFT JOIN VC_Integers AS tri_obj_ints ON tri_obj_ints.id=tri.obj

WHERE (COALESCE(tri_obj.-dbls.double_value,tri_obj_ints.int_value)<30

OR COALESCE(tri_obj_strs.str_value,tri_obj_bstrs.text_value)<’B’)
AND (tri_obj_strs.str_value IS NOT NULL

OR tri_obj_bstrs.text_value IS NOT NULL

OR tri_obj_dbls.double_value IS NOT NULL

OR tri_obj_ints.int_value IS NOT NULL)

School of Science 0-11-08

A' Aalto University SPARQL to SQL Translation Based on an Intermediate Query Language
201
B and Technology 25/20

