
HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Laboratory of Software Technology

Ville Karavirta

Facilitating Algorithm Animation Creation

and Adoption in Education

Licentiate’s Thesis submitted in partial fulfillment of the requirements for the
degree of Licentiate of Science in Technology.

Espoo, December 7, 2007

Supervisor: Professor Lauri Malmi

Instructor: Docent Ari Korhonen

HELSINKI UNIVERSITY ABSTRACT OF

OF TECHNOLOGY LICENTIATE THESIS

Department of Computer Science and Engineering

Author: Ville Karavirta Date: December 7, 2007

Pages: 54 + 53

Title of the thesis:

Facilitating Algorithm Animation Creation and Adoption in Education

Professorship: Software Systems Code: T-106

Supervisor: Professor Lauri Malmi

Instructor: Docent Ari Korhonen

Algorithm visualization aims to aid the human understanding of a high-level representa-
tion of a piece of code. Algorithm animation (AA) is a dynamic algorithm visualization
where the dynamic behavior can range from a series of static pictures to an animation
requiring interaction from the user.

Algorithm animation has been found to be educationally effective, provided that it
is interactive enough. However, algorithm animation has not been widely used in
teachiing computer science. One of the main reasons for not taking full advantage of
AA in teaching is the lack of time on behalf of the instructors. Furthermore, there
is a shortage of ready-made, good quality algorithm visualizations. Based on this
knowledge, this research focuses on facilitating the creation and adoption of AA in
education by finding answers to the following two questions.

First, we research how to lower the effort needed to produce algorithm visualizations
for teaching. To achieve this, we first define a taxonomy to measure the effortlessness
of AA systems. Then, we present a new effortless system, MatrixPro, that is intended
for teachers to use on lectures.

The second research question is, how can we enable data exchange between algorithm
animation systems. To answer this, we specify a taxonomy of algorithm animation
languages based on a survey of existing AA languages. We then use the taxonomy
to combine the required features of a language that can be used as an intermediate
language when exchanging data between algorithm animation systems. Based on this
synthesis and the work of the international algorithm animation research community, we
define an eXtensible Algorithm Animation Language, Xaal. In addition, we introduce
an implementation of a set of tools that enables us to exchange data between various
AA systems. Finally, we evaluate the new language based on the taxonomy of the
algorithm animation languages and the tool implementation.

Keywords: algorithm animation, effortlessness, algorithm animation language, XAAL

ii

TEKNILLINEN KORKEAKOULU LISENSIAATINTUTKIMUKSEN

Tietotekniikan osasto TIIVISTELMÄ

Tekijä: Ville Karavirta Päiväys: 7. joulukuuta 2007

Sivumäärä: 54 + 53

Työn nimi: Algoritmianimaatioiden luomisen ja käyttöönoton helpottaminen

Professuuri: Ohjelmistojärjestelmät Professuurin koodi: T-106

Työn valvoja: Professori Lauri Malmi

Työn ohjaaja: Dosentti Ari Korhonen

Algoritmien havainnollistamisella pyritään helpottamaan ihmistä ymmärtämään kor-
kean tason esitystä ohjelmakoodista. Algoritmianimaatio on puolestaan dynaamista al-
goritmien havainnollistamista. Dynaaminen luonne voi vaihdella kuvasarjasta käyttäjän
vuorovaikutusta vaativaan animaation.

Algoritmianimaatioista on todistettu olevan apua oppimisessa mikäli ne ovat tarpeeksi
vuorovaikutteisia. Tästä huolimatta algoritmianimaatio ei ole saavuttanut suurta suo-
siota opettajien keskuudessa. Pääsyy tähän on, että opettajilla ei ole tarpeeksi aikaa
animaatioiden luomiseen. Lisäksi valmiista, korkealaatuisista animaatioista on pulaa.
Tämän tiedon pohjalta tässä työssä keskitytään tarkastelemaan algoritmianimaation
luomisen ja käyttöönoton helpottamista tarkastelemalla seuraavia kahta kysymystä.

Ensin työssä tutkitaan miten animaatioiden tekemisestä saataisiin vähemmän vai-
valloista. Tähän kysymykseen etsitään ratkaisua määrittämällä tapa mitata animaa-
tiojärjestelmien vaivattomuutta. Lisäksi esitellään järjestelmä, MatrixPro, joka on vai-
vaton luentotyökalu opettajille.

Toisena kysymyksenä tarkastellaan kuinka voitaisiin toteuttaa algoritmianimaa-
tioiden siirto järjestelmästä toiseen ei ole ollut mahdollista. Tähän työkaluksi
määrittelemme taksonomian algoritmianimaatiokielten arvioimiseen. Tätä taksono-
miaa käytetään hyödyksi määriteltäessä ominaisuuksia, joita vaaditaan algoritmia-
nimaatiojärjestelmien väliseen tiedonvaihtoon soveltuvalta kieleltä. Tältä pohjalta
määrittelemme laajennettavan algoritmianimaatiokielen (Xaal eXtensible Algorithm
Animation Language). Kielen määrittelyssä käytetään hyväksi myös kansainvälisen
työryhmän visiota yhteisestä algoritmianimaatiokielestä. Lisäksi esittelemme toteu-
tuksen joukosta työkaluja, joka mahdollistaa tiedonvaihdon eri algoritmianimaa-
tiojärjestelmien välillä. Lopuksi arvioimme määritellyn kielen taksonomian ja toteu-
tuksen perusteella.

Avainsanat: algoritmianimaatio, vaivattomuus, algoritmianimaatiokieli, XAAL

iii

Acknowledgements

This thesis has been done for the Software Visualization Group in Laboratory of

Software Technology. First and foremost I would like to thank my supervisor Pro-

fessor Lauri Malmi and instructor Docent Ari Korhonen for providing the facilities

to do this work. Their input and feedback to the work during this process has been

highly valuable.

An essential part of this work is the Matrix framework and I would like to thank

the people who have been involved in developing it: Tapio Auvinen, Erik Fallenius,

Juha Helminen, Jan Lönnberg, Jussi Nikander, Otto Seppälä, Petri Ihantola, and

all the former members.

I am also grateful to the participants of the ITiCSE XML Working Group,

Guido Rößling, Thomas Naps, Peter Brusilovsky, John English, Duane Jarc, Chuck

Leska, Myles McNally, Andrés Moreno, Rocky Ross, and Jaime Urquiza-Fuentes,

for the discussions and ideas during the intensive five-day spell in Portugal. I would

especially want to thank Tom and Guido for giving me the chance to be part of the

group.

My greatest gratitude goes to Linda for her love and support. And especially

for constantly reminding me that there is life besides the thesis.

Finally, I wish to thank my family for the tremendous support over the years.

Otaniemi, December 7, 2007

Ville Karavirta

iv

List of publications and the

contributions of the author

This thesis consists of an introduction and the following publications [P1] - [P5]

[P1] Ville Karavirta, Ari Korhonen, Lauri Malmi, and Kimmo St̊alnacke. Ma-
trixPro - A tool for on-the-fly demonstration of data structures and algorithms.
In Proceedings of the Third Program Visualization Workshop, pages 26–33, The
University of Warwick, UK, July 2004.

In this paper, an algorithm animation system called MatrixPro is introduced.
The system supports on-the-fly creation of animations using visual algorithm simula-
tion. The author implemented the system based on the Matrix algorithm simulation
framework [36].

[P2] Thomas Naps, Guido Rößling, Peter Brusilovsky, John English, Duane Jarc,
Ville Karavirta, Charles Leska, Myles McNally, Andrés Moreno, Rockford J. Ross,
and Jaime Urquiza-Fuentes. Development of xml-based tools to support user inter-
action with algorithm visualization. SIGCSE Bulletin, 37(4):123–138, December
2005.

This paper discusses requirements for a common algorithm animation language
to be used by multiple AA systems. It gives examples and specifications for the
different elements of AA. The author’s main contributions were in the specification
of the graphical primitives and transformations on them.

[P3] Petri Ihantola, Ville Karavirta, Ari Korhonen, and Jussi Nikander. Taxon-
omy of effortless creation of algorithm visualizations. In ICER’05: Proceedings of
the 2005 international workshop on Computing education research, pages 123–133,
New York, NY, USA, 2005. ACM Press.

This paper introduces a taxonomy of effortless creation of algorithm visualiza-
tions and evaluates some of the existing AV systems. All the authors of the paper
contributed evenly on all parts of the paper.

v

[P4] Ville Karavirta, Ari Korhonen, and Lauri Malmi. Taxonomy of algorithm
animation languages. In SoftVis ’06: Proceedings of the 2006 ACM symposium on
Software visualization, pages 77–85, New York, NY, USA, September 2006. ACM
Press.

This paper introduces a taxonomy of algorithm animation languages. In addi-
tion, there is an evaluation of several existing AA languages. This work is based on
the work by the author in [27].

[P5] Ville Karavirta. Integrating algorithm animation systems. In Proceedings of
the Fourth Program Visualization Workshop (PVW 2006), volume 178 of Electronic
Notes in Theoretical Computer Science, pages 79–87, 4 July 2007.

This paper describes a new algorithm animation language called Extensible Al-
gorithm Animation Language, Xaal. In addition, the paper shows how Xaal can
be used to transfer algorithm animations between AA systems. The author of this
thesis is the sole author of this work.

vi

Contents

1 Introduction 1
1.1 Previous Work . 2
1.2 Motivation and Research Problem 3
1.3 Contributions . 4
1.4 Structure of this Thesis . 4

2 Definition of Concepts 5
2.1 Software Visualization and Algorithm Animation 5

2.1.1 Characteristics of Software Visualization Systems 6
2.1.2 Roles in Software Visualization 6
2.1.3 Algorithm Animation Language 8
2.1.4 Other Definitions of Software Visualization 8

3 Algorithm Animation 9
3.1 History of Algorithm Animation . 9
3.2 Characteristics of Algorithm Animation Tools 10

3.2.1 Category Scope . 10
3.2.2 Category Content . 11
3.2.3 Category Form . 11
3.2.4 Category Method . 13
3.2.5 Category Interaction . 14
3.2.6 Category Effectiveness . 15

3.3 Algorithm Animation Systems . 15

4 Effortless Creation of Algorithm Animations 17
4.1 Taxonomy of Effortless Creation of Algorithm Visualizations 17
4.2 MatrixPro . 19

5 Algorithm Animation Languages 21
5.1 Features of Algorithm Animation Languages 21

5.1.1 Representation Format . 22
5.1.2 Level of Abstraction . 22
5.1.3 Animation . 23
5.1.4 Programming Concepts . 24

vii

5.1.5 Interaction . 25
5.2 Taxonomy of Algorithm Animation Languages 26

6 Data Exchange in Algorithm Animation 29
6.1 ITiCSE Working Group . 29
6.2 XAAL . 30
6.3 Implementing Data Exchange . 31

6.3.1 Prototype Implementations 32
6.4 Evaluation . 33

6.4.1 Taxonomic Evaluation . 33
6.4.2 Implementation-based Evaluation 37

7 Discussion 38
7.1 Lowering the Effort . 38
7.2 Data Exchange . 39
7.3 Future Work . 41
7.4 Final Remark . 41

A Algorithm animation systems 42
A.1 ALVIS . 42
A.2 Animal . 43
A.3 DsCats . 44
A.4 JAWAA . 44
A.5 JHAVÉ . 45
A.6 JSAMBA . 46
A.7 MatrixPro . 46

Bibliography 48

viii

Chapter 1

Introduction

Due to the rapidly increased performance of computerized devices, software products

have grown to be more and more complex. As a result, software developers need

to understand very large parts of the software. To help them achieve this, a lot of

research in the field of Software Visualization (SV) has been carried out. Software

Visualization can be defined as ”the visualization of artifacts related to software and

its development process” [17].

Software Visualization can be applied to and benefited from on many different

areas. Software developers can get insights on the class or package structures of an

object-oriented software or detailed information of the state of the program through

visual debuggers. In addition, they can test their software using visual testing [39].

On the other hand, algorithm developers and researchers can get a better view of

the algorithms through visualizations. In education, students can use visualiza-

tions to help them understand and learn new concepts in software development and

algorithmics.

In general, SV can be divided into visualizing the structure, behaviour, and

evolution of software. Structure is the visualization of static parts and relations of

the system. Behaviour is the visualization of the program execution with real or

abstract data. Finally, evolution is the visualization of the development process of

the software. [17]

Algorithm animation (AA) is one form of visualization of behaviour where the

goal is to visualize the execution of an algorithm [17]. The main purpose of algorithm

animation development is aimed toward use in educational context. This is also the

focus in this thesis, although the ideas can be applied to different areas of SV as

well.

1

CHAPTER 1. INTRODUCTION 2

Algorithm animation has been used in education for a few decades with the goal

of helping students to learn the difficult concepts of data structures and algorithms.

Recent studies have shown that to be educationally effective (i.e. aid students’

learning) algorithm visualizations cannot be merely passive animations, the users

must interact with the animation [23, 45]. Due to this discovery, different tools

supporting various types of interaction have been developed. This user interaction

can be, for example, responding to multiple-choice questions during the animation

or constructing an algorithm animation using a visualization system.

1.1 Previous Work

In the Laboratory of Software Technology, the research in the field of SV started with

the problem of manually grading exercises on the Data structures and algorithms

course. With around 400 students participating on the course annually, an idea of an

automatic assessment system was raised in early 1990’s. The first system developed

was TRAKLA [24] that automatically assessed students’ solutions to algorithmic

exercises. The answers had to be submitted to the system in a predefined textual

format by email.

The first step in the field of SV was taken in mid 1990’s when a graphical front-

end for TRAKLA called TRAKLA-EDIT [24, 35] was developed. TRAKLA-EDIT

allowed students to graphically solve the exercises and the system generated and

sent the solutions by email. Although a major step forward, this system still had

several limitations. First, there was no mapping between a data structure and the

corresponding visualization. Thus, TRAKLA-EDIT was like a drawing tool for

data structures and algorithms. Second, creating new exercises for the system was

time consuming. To solve these problems, the development of a new application

framework, eventually named Matrix [36], was initiated in 1999.

Matrix introduced a new concept, visual algorithm simulation [34], that allows

direct manipulation of underlying data structures through a graphical representa-

tion. Matrix is a Java-based framework for developing applications that use visual

algorithm simulation and visualization. Based on Matrix, a follower for TRAKLA-

EDIT named TRAKLA2 was introduced in 2003 [35, 40]. TRAKLA2 is used to pro-

vide visual algorithm simulation exercises, where the student simulates the workings

of actual algorithms. These exercises are automatically assessed and students get

the feedback immediately.

CHAPTER 1. INTRODUCTION 3

1.2 Motivation and Research Problem

As mentioned, algorithm animation has been found to be educationally effective,

provided that it is interactive enough [23]. Thus, a lot of research has been done

on how to produce effective animations for the students. On the other hand, one of

the main reasons for not taking full advantage of algorithm animation in teaching is

the lack of time on behalf of the instructors [45]. Furthermore, there is a shortage

of ready-made, good quality algorithm visualizations usable in teaching [56]. Based

on this knowledge, this research focuses on the instructor’s point of view and aims

at finding answers to the following question.

1. How can we develop algorithm animation systems to lower the effort needed to

produce algorithm visualizations for teaching?

To answer this question, we will explore what makes an algorithm animation

system effortless. Based on this we will introduce a new AA system that is effortless

to use in it’s application area.

Currently, there are several systems (for example [2, 15, 22, 41, 46, 52, 59]) avail-

able for algorithm animation creation and usage in teaching. They provide different

approaches to creating animations. In addition, for students using these animations,

the systems provide different interaction methods. The problem is, however, that

each of these systems has its own internal format for storing the animations and

no data exchange between the systems is possible. Thus, when a teacher needs,

for example, some specific type of activity, he or she has to create a new animation

with a system supporting the required activity. For example, currently an animation

used for passive viewing can not be used when wanting the students to respond to

questions asked by the animation. Furthermore, a survey by Bassil and Keller [7]

concluded that integrations of SV tools and importing/exporting visualizations from

SV tools are the main challenges for the future of SV tool builders. This leads us

to the second research problem:

2. How can we enable data exchange between the existing algorithm animation

systems?

We will tackle this question by thoroughly analyzing the existing algorithm an-

imation systems and thus identifying the key features of algorithm animation lan-

guages. This information is then used to implement the data exchange.

CHAPTER 1. INTRODUCTION 4

1.3 Contributions

The following points summarize the main contributions of this work.� We define a Taxonomy of Effortless Creation of Algorithm Animations and

introduce a system, MatrixPro, which allows effortless on-the-fly creation of

algorithm animations by applying visual algorithm simulation and a simple

user interface.� We define a Taxonomy of Algorithm Animation Languages to help comparing

the different AA languages.� The taxonomy helps us in defining a new algorithm animation language, eX-

tensible Algorithm Animation Language, Xaal. In addition, we implement a

parser for the language.� We implement a set of tools for exchanging data between algorithm animation

systems. The data exchange allows transferring data from an effortless, course-

specific system (MatrixPro) to a general system (Animal).

1.4 Structure of this Thesis

This thesis is structured as follows. Chapter 2 introduces the concepts discussed in

this thesis in more detail. Chapter 3 begins with a short introduction to the history

of algorithm animation and continues to discuss the characteristics of AA systems.

Chapter 4 discusses the effortless creation of algorithm visualization. In Chapter 5,

we introduce typical features of algorithm animation languages as well as present

a taxonomy to evaluate the languages. Chapter 6 in turn describes our solution to

implementing data exchange between AA systems. Finally, Chapter 7 discusses the

usefulness of this work as well as looks into the future.

Chapter 2

Definition of Concepts

This chapter briefly defines the concepts used in the rest of this theses. We start by

defining the field of Software Visualization and Algorithm Animation. Furthermore,

we discuss the characteristics of SV systems as well as different roles in the SV

production process.

2.1 Software Visualization and Algorithm Animation

Software Visualization can be defined as ”the visualization of artifacts related to

software and its development process” [17]. As mentioned earlier, SV can be divided

in visualizing the structure, behaviour, and evolution of software [17]:� Structure is the visualization of static parts and relations of the system. The

information visualized is available by statically analyzing the source code with-

out executing it. Examples of structure visualization are pretty printing, con-

trol flow graphs, and UML class diagrams, just to mention a few.� Behaviour is the visualization of the program execution with real or abstract

data. Topics of behaviour visualization are dynamic architecture visualization,

algorithm animation, visual debugging, and visual testing. Of these, algorithm

animation is of special interest in this theses. In algorithm animation, the goal

is to visualize the behaviour of an algorithm on a higher level of abstraction

than source code.� Evolution is the visualization of the development process of the software. Evo-

lution visualization can be, for example, visualizing software metrics changes,

visualizing structural changes, or visualizing software archives such as CVS.

5

CHAPTER 2. DEFINITION OF CONCEPTS 6

2.1.1 Characteristics of Software Visualization Systems

It is difficult to choose a proper tool for software visualization from the vast amount

of different SV tools supporting different features, target scope, and interaction tech-

niques. The best suitable tool depends heavily on the type of the task. To help this

process, taxonomies categorizing SV tools have been defined [42, 47, 48, 62]. One

of the most well-known ways to categorize and evaluate Software Visualization sys-

tems is the Taxonomy of Software Visualization by Price et al. [47]. The taxonomy

defines a structure of characteristics of SV systems that consists of six categories.

These categories and the questions they should answer are the following.� Scope — “What is the range of programs that the SV system may take as input

for visualization?”� Content — “What subset of information about the software is visualized by the

SV system?”� Form — “What are the characteristics of the output of the system (the visual-

ization)?”� Method — “How is the visualization specified?”� Interaction — “How does the user of the SV system interact with and control

it?”� Effectiveness — “How well does the system communicate information to the

user?”

These categories and their meaning in the SV production process are illustrated

in Figure 2.1. They will be more thoroughly explained in the next chapter.

2.1.2 Roles in Software Visualization

The four different roles of persons who take advantage of software visualization

are also shown in Figure 2.1. Programmer is a person who develops the algorithm

or program without considering whether or not it is (going to be) visualized. SV

software developer is a person who designs and implements software for SV. A

person creating the visualization is called visualizer. Finally, the person using the

visualization is addressed as user. In practice, these roles are often overlapping and

it is common that, for example, the SV software developer is also a visualizer and a

programmer. [47]

In this thesis, the main focus is on the educational use of SV. Thus, the persons

involved are student and instructor. When considering the roles in SV, the usual

CHAPTER 2. DEFINITION OF CONCEPTS 7

Program to be visualized

A
:

S
co

p
e

Aspects visualized (e.g. Code,

Data, Algorithm, ...)

B
:

C
o

n
te

n
t

Specification for a

given visualization

D
:

M
et

h
o

d

user to interact with

visualization

Commands/gestures from

E
:

In
te

ra
ct

io
n

Software Visualization

Software
User

Visualization

of Software

UserVisualizerProgrammer

SV System Developer

C: Form

F: E
ffe

ctiv
eness

Figure 2.1: SV production process [47].

case is that student is the user and instructor has the rest of the roles. However,

when considering, for example, a situation where the students are required to create

their own visualizations, the student is in the role of visualizer. In this thesis, we

will use the terms student and instructor and indicate which of the SV roles we are

discussing unless it is clear from the context.

Until recently, the instructor has often been in the role of the developer. Usually,

this is a task that requires a lot of effort and to gain wider audience, SV systems

need to allow the instructor to be able to work only in the roles of programmer and

visualizer.

When considering the student using the visualization, research has shown that

passively viewing algorithm animations does not have a significant effect on learn-

ing outcomes [23]. Therefore, engagement (activity) by the student is needed for a

tool to be pedagogically useful. The different levels of engagement according to the

engagement taxonomy [45] are viewing, responding, changing, constructing, and pre-

senting. Viewing is passive watching of an animation where student only controls the

visualization’s execution. In responding, the student is engaged by asking questions

about the visualization. Changing requires the student to modify the visualization,

CHAPTER 2. DEFINITION OF CONCEPTS 8

for example, by changing the input data. In constructing, the student is required

to construct his/her own algorithm animation. At the highest level, presenting, the

student presents a visualization for an audience.

2.1.3 Algorithm Animation Language

Throughout this thesis we will talk about algorithm animation language (or simply

language). With this term we mean a textual representation describing an algorithm

animation or visualization. The language should have a well-defined set of concepts,

syntax, and semantics defined in the language specification. An algorithm animation

system is a tool capable of interpreting a script written in an algorithm animation

language and animating/visualizing it.

2.1.4 Other Definitions of Software Visualization

Price et al. [47] have defined software visualization as “the use of the crafts of typogra-

phy, graphic design, animation, and cinematography with modern human-computer

interaction technology to facilitate both the human understanding and effective use

of computer software.” They divide SV into two separate fields: algorithm visualiza-

tion and program visualization. Program visualization is the use of visualization to

enhance the human understanding of computer programs. Algorithm visualization

(AV) is the visualization of a high-level representation of a piece of code. AV can be

further divided into static algorithm visualization and algorithm animation (AA).

Algorithm animation is a dynamic algorithm visualization. The dynamic behavior

can range from a series of static pictures to an animation requiring interaction from

the user. The problem with this definition of SV is that the line between algorithm

visualization and program visualization has become fuzzy.

Chapter 3

Algorithm Animation

In this chapter, we discuss algorithm animation in more detail. We start with a

short introduction to the history of algorithm animation. Next, we introduce the

characteristics of software visualization and algorithm animation systems. Finally,

we briefly describe several algorithm animation systems.

3.1 History of Algorithm Animation

The research on algorithm animation is often considered to have begun from the

Sorting out Sorting video [5] by Ronald M. Baecker in 1981. It was a 30 minutes

long video animating the behavior of nine different sorting algorithms. However, the

first algorithm animations we are aware of were created in 1966 by Ken Knowlton,

who made a movie about list processing using the L
6 programming language [33].

More of the early work was done by Baecker who in 1975 presented two systems that

made it ”possible for an instructor to produce short quick-and-dirty single-concept

film clips with only hours of effort” [4].

The field has evolved a lot since the first videos and systems were introduced.

The first well-known computerized system was BALSA (Brown ALgorithm Simula-

tor and Animator) [13]. BALSA is an interactive algorithm animation framework

that has a support for multiple dynamic views of an algorithm and the data struc-

tures associated to it. Another recognized system of the early years of algorithm

animation is TANGO (Transition-based ANimation GeneratiOn) [57]. It is an AA

system that introduced the path-transition paradigm and supported smooth anima-

tion. Since then, numerous algorithm animation systems have been developed (see,

e.g., [2, 9, 15, 22, 28, 38, 41, 46, 52, 59]). Figure 3.1 shows a timeline of the vari-

9

CHAPTER 3. ALGORITHM ANIMATION 10

Figure 3.1: History of some Algorithm Animation Systems. The vertical positioning
is merely a matter of improving readability.

ous AA systems. Plenty more systems exist, but the contributions of the selected

systems will be briefly mentioned in the next section.

Currently, the main focus of the research is on engaging the student’s with the

tools [23, 45] and aiding the adoption of AA in teaching [25, 45, 55]. The current

tools are thought to require too much time and effort to be useful [45], although

compared to the Sorting out Sorting video that took three years to make [6], they

are quite effortless to use.

3.2 Characteristics of Algorithm Animation Tools

To introduce algorithm animation and the research done on the field, this section

will consider the characteristics and functionality of current algorithm animation

tools. This will be done by examining the categories of a widely-accepted Software

Visualization taxonomy [47]. We will not faithfully follow the taxonomy since it is

already somewhat outdated and was intended to be extended and updated. However,

the main categories are the same but with some parts left out or updated based on

their relevance and research done after the taxonomy was published.

3.2.1 Category Scope

The category Scope is defined in the taxonomy to describe the range of programs

that the system can visualize. It has two subcategories: Generality and Scalabil-

ity. Scalability is used to measure how well the system scales up to visualize large

examples. Generality describes how general a range of programs the system can

CHAPTER 3. ALGORITHM ANIMATION 11

display. Generality also includes subcategories such as operating system and hard-

ware. These subcategories are out of date, since today a tool must be easy to obtain

and install and platform independent [49]. If these criteria are not met, it is highly

unlikely that the tool will gain wide audience.

3.2.2 Category Content

The category Content describes how much information about the software is visual-

ized by the system. Most of the subcategories are related to program visualization

that is not considered here. The interesting subcategory is Algorithm. This sub-

category describes the degree that the system visualizes the high-level algorithms.

This is divided in two: instructions and data.

Instructions describes the degree of support for visualizing code instructions in

the algorithm. This is often called code visualization. It is a mapping between

the changes in the code and the visualization of the data. Code visualization can

be done in various ways, for example, by highlighting single code lines or showing

several codes of the same algorithm on different abstraction levels [14]. In addition

to highlighting the current line, the code visualization can show things such as

executed lines of codes (distinguished from the ones not executed) and the lines

executed just before the current line [37].

The subcategory Data describes the capability of the system to visualize high-

level data structures used by the algorithm. In algorithm animation, the lower

extreme here is a system that uses only graphical primitives to describe the data

structures. An example of such a system is SAMBA [61]. The other extreme is

a system that visualizes only high level data structures, like, for example, Matrix-

Pro [28]. These different approaches have both benefits and drawbacks. By using

graphical primitives, the system can visualize almost any kind of structures, but the

creation of such animations can require quite a lot of effort. On the other hand,

systems using data structures can provide an effortless way to create the animation,

but are typically limited to the set of structures supported by the system.

3.2.3 Category Form

The category Form describes the characteristics of the visualization created with the

system. The subcategories are Medium, Presentation Style, Granularity, Multiple

Views, and Program Synchronization.

Medium describes the target medium of the visualization system. This can be,

for example, screen or paper. Currently, the focus is on web deployment [31]. This

CHAPTER 3. ALGORITHM ANIMATION 12

adds requirements for AA tools that must either support suitable export-formats

or be implemented as Java applets. There is a wide range of web-based systems

available today, for example, JAWAA [2], Jeliot [20], JHAVÉ [46], JCAT [43], and

JSAMBA [59].

The Presentation Style category describes the general appearance of the visu-

alization. Algorithm visualization and animation can apply several different styles.

2D graphics is the most used style to visualize algorithms. An option is 3D graphics

that can be used to express additional information about data, add another view to

the same data, or visualize the history of a two-dimensional view [12]. For example,

3D graphics can be used in JCAT [43], and POLKA [58] has also been extended to

support 3D animations. JCAT is a Java-based system for developing and viewing

web-based collaborative active textbooks on algorithms. POLKA is an algorithm

animation system that was designed to animate parallel programs.

A subcategory of Presentation Style is Sound. Auralization is a technique that

uses sounds and melodies to describe the execution of an algorithm or a program.

This can be done, for example, by mapping program data and events to certain

sounds. There are several reasons to use auralization: humans can process aural in-

formation without actively listening, we have the ability to detect patterns in sound

and to detect omissions in an aural pattern, sound and music can naturally portray

parallel events, and the different sense used makes it possible to focus on two “views”

at the same time [18]. Voice is also a good way to keep the user interested in the an-

imation [19]. Although sound was used already in the Sorting out Sorting video [6],

one of the pioneers using sound was Zeus [11]. Zeus used sound for reinforcing visual

display, conveying patterns, replacing visuals, and signaling exceptional conditions.

Another example of a system using auralization is CAITLIN [64]. CAITLIN allows

the specification of an auralization for Pascal code constructs. It has been used to

aid novice programmers debug their Turbo Pascal programs using auralization.

Another part of the Presentation style is the use of animation. In the context

of algorithm animation, this will naturally be supported by the systems. However,

there are two different techniques to support animation: smooth animation and dis-

crete changes. In smooth animation, the changes in an animation step are shown

as smooth transitions. With discrete changes, the changes are made without transi-

tions and the changed parts are often highlighted. It has been argued that smooth

animation is suitable for small data sets, whereas discrete changes are suited for

large sets of data [10]. In addition to using smooth animation to highlight changes,

several other techniques can be used to notify the user. For example, the shape or

color of the graphical object that changed can be modified [10].

CHAPTER 3. ALGORITHM ANIMATION 13

The category Granularity measures how well the system supports different levels

of granularity. That is, does the system show the fine-grained details as well as allow

the filtering of small details to view the bigger picture. This is important, since

various users will have different needs, thus the tool must support different levels of

abstraction [63].

The category Multiple Views measures the degree of multiple view support.

Multiple Views eases the visualization of complicated algorithms or allows showing

multiple, synchronized aspects of a simple algorithm, and is thus an important

feature of AV systems [14].

The last category, Program Synchronization, measures the support for synchro-

nized visualization of several different algorithms. This can help the comparison

of different algorithms. For example, the Sorting out Sorting video shows several

algorithms sorting the same data, thus making it easy to see how efficient they are.

3.2.4 Category Method

The category Method describes how the visualization is specified. It has two sub-

categories: Visualization Specification Style and Connection Technique.

Connection Technique describes how the program source code and the visualiza-

tion are connected. This is, however, not relevant to our task here since we are not

dealing with program visualization.

Visualization Specification Style describes the way visualizations are specified.

In the original taxonomy this was measured using terms like hand-coded, library,

and automatic. However, since the taxonomy was introduced, many different vi-

sualization specification styles have emerged. Thus the list above is out-dated and

we will introduce an alternative categorization in the following. The list is loosely

based on [50]. It should be noted, that many of the current systems include several

of the techniques.� Topic-Specific Animation - Topic specific animations are, as the name suggests,

built specifically for some topic. Usually these are stand-alone animations

instead of algorithm animation systems. For example, the software packages

by Khuri and Hsu concentrate on image compression algorithms [32].� Direct Manipulation - In direct manipulation [60], the animation is specified

by manipulating graphical objects. Visual algorithm simulation [34] takes

direct manipulation one step further by allowing the animation to be specified

manipulating concrete data structures through visualizations. Examples of

AA systems using direct manipulation are Dance [60] and MatrixPro [28].

CHAPTER 3. ALGORITHM ANIMATION 14� API-based Generation - In API-based generation, the animations are generated

through method invocations of a visualization system’s application program-

mer’s interface (API). An example of this approach is JHAVÈ and the API to

generate GaigsXML [44].� Scripting-based Generation - In scripting-based generation, the animations are

described using some intermediate format, usually a textual format. Examples

are Animal [51], and JAWAA [2].� Declarative Visualization - Declarative visualization specifies the visualization

by declaring mappings between a program state and a graphical representa-

tion. This is done by using mathematical expressions. An example of this

approach is the ALPHA language [16].� Code Interpretation - Code interpretation is also a popular style due to its

effortlessness. An example of such system is Jeliot 3 [41] that automatically

visualizes small Java programs.

This topic of visualization specification styles is relevant for the implementation

strategies of the data exchange. In discussion in Chapter 7, we will consider how

these different approaches fit to the idea of data exchange between systems.

3.2.5 Category Interaction

This category contains metrics to evaluate the way the user interacts with an SV

system. The subcategories are Style, Navigation, and Scripting Facilities.

The category Style describes the method used to give instructions to the system.

Here we will extend this category and include a new taxonomy to describe the style

(or level) of interaction (or engagement) supported by the system. The different

levels of engagement according to the engagement taxonomy [45] are the following.� Viewing is the core level of engagement. It is passive viewing of an anima-

tion. However, the student can have controls to move backward/forward in

the visualization, change the speed, etc. It should be noted, that viewing is

included on all of the higher levels of engagement.� In responding, the student is engaged by asking questions about the visualiza-

tion. The question can be, for example, ”What will happen in the next step

of the algorithm?”. The main idea is that students use the visualization to

find the answer for the questions.

CHAPTER 3. ALGORITHM ANIMATION 15� Changing requires the student to modify the visualization. This can be, for

example, changing the input data of the algorithm allowing the student to

explore the algorithm’s behavior in different situations.� In constructing, the student is required to constructs his/her own algorithm

animation. This can be done, for example, in terms of direct manipulation

in some algorithm animation system. It should be noted, that coding of the

algorithm is not a requirement on this level.� At the highest level, presenting, the student presents a visualization for an

audience. This can be, for example, a situation where a student presents a

visualization for the instructor and peers. The visualization can be made by

the student or a third-party.

The Navigation subcategory is interesting and requires good control over the

animation for the tool to be evaluated good in this category. This is important in

AA in education because when using the tool for viewing an animation, the user

will need to compare steps in the animation to understand the algorithm. Good

controls include the capability to move backwards and forwards, play and pause,

and change the speed of the animation [3, 52].

The Scripting category answers the question whether the tool supports some

scripting language to define the animations. This is naturally a feature highly

related to our topic. Thus, we will survey some systems supporting this feature in

Section 3.3 and their (scripting) languages in Chapter 5.

3.2.6 Category Effectiveness

This category is related to measuring the effectiveness of the created animations.

From the educational point of view, this is an extremely important category. How-

ever, this is not related to the production of an algorithm animation or to the

specification of an algorithm animation language and is therefore not examined

here.

3.3 Algorithm Animation Systems

In this section, we will briefly introduce some of the numerous algorithm anima-

tion systems developed over the years. We will describe systems that include an

algorithm animation language that can be used to specify the animations because

our target is to define a new algorithm animation language. These descriptions are

CHAPTER 3. ALGORITHM ANIMATION 16

merely an introduction to the different systems, more detailed descriptions can be

found from Appendix A or from the cited papers.

ALVIS ALgorithm VIsualization Storyboarder (ALVIS) [22] is an interactive algo-

rithm visualization system designed to create and view low-fidelity algorithm

visualizations. In low-fidelity visualizations, the algorithm is illustrated with

few inputs using a sketched, unpolished appearance.

Animal Animal [52] is a general-purpose animation tool with a current focus on

algorithm animation. It has a scripting language called AnimalScript [51]

DsCats Data Structure Computer Animation Tools (DsCats) [15] is an applica-

tion focused on learning the data structures and algorithms. It supports tree

structures such as B-Tree and binary search tree.

JHAVÉ JHAVÉ [46] is an algorithm visualization environment that is intended

as a platform for algorithm visualization systems. The current version of

JHAVÉ has an XML language called GaigsXML [44].

JAWAA JAWAA 2.0 [2] is a data structure and algorithm animation system that

consists of three parts: a scripting language, a graphical editor, and an applet

capable of showing animations defined in the scripting language.

JSAMBA JSAMBA [59] is a front-end for the POLKA [58] algorithm animation

system. Basically, it is a viewer to visualize animations written in the Samba

scripting language [61].

MatrixPro MatrixPro (see Publication [P1] for details) is a system to create algo-

rithm animations using visual algorithm simulation.

Chapter 4

Effortless Creation of Algorithm

Animations

The effort and time needed to create algorithm visualizations is one of the main

reasons for educators not adopting AV in their teaching. Thus, in this chapter, we

will first consider the effortless creation of algorithm animations. Furthermore, we

briefly describe our implementation of an effortless system, MatrixPro.

4.1 Taxonomy of Effortless Creation of Algorithm Vi-

sualizations

In the past, we have identified that there are either specific, low effort systems or

general, high effort systems [29]. That research was, however, our subjective view of

the subject. The next step was a survey targeting computer science educators [30].

The survey resulted in an initial set of measures for effortlessness. Based on that

data, we introduced a Taxonomy of Effortless Creation of Algorithm Visualizations

(see Publication [P3]). The main categories of the taxonomy are briefly introduced

in the following, for more detailed discussion, see Publication [P3].

Category Scope This category measures how wide the application area of the vi-

sualization system is. The taxonomy defines four levels: lesson-specific, course-

specific, domain-specific, and non-specific with non-specific systems having the

widest scope. For example, a lesson-specific system can only be used on one

lecture whereas course-specific can be used on most lectures on a course.

Category Integrability This category measures the features that make the sys-

tem easy to integrate into an education setup. This includes features such as

17

CHAPTER 4. EFFORTLESS CREATION OF ALGORITHM ANIMATIONS 18

ease of installation, documentation, course management support, and integra-

tion into hypertext.

Category Interaction This category measures the interaction provided by the

system. It distinguishes two types of interaction: producer-system inter-

action and visualization-consumer interaction. Producer-system interaction

measures the level of preparation needed for different tasks such as lecture

examples or creating an exercise for examination. Visualization-consumer in-

teraction measures the level of interaction (or engagement) provided for the

user of the visualization.

Publication [P3] includes evaluations of four systems (Animal [52], JAWAA [2],

Jeliot 3 [41], and MatrixPro) using this taxonomy. The main finding in the evalua-

tion is that there are no generic systems that can be used without prior preparation

(see Figure 4.1). Thus, the final question in the article is, can such a system be

developed? In the next section, we will introduce a system, MatrixPro, that is

course-specific and that can be used on-the-fly.

Figure 4.1: Evaluation of effortlessness of four AA systems. A single system might
support several levels of on-the-fly use, but only the most typical level is marked.

CHAPTER 4. EFFORTLESS CREATION OF ALGORITHM ANIMATIONS 19

4.2 MatrixPro

Publication [P1] introduces a new algorithm animation system called MatrixPro (see

Figure 4.2) that allows on-the-fly creation of algorithm animations. It is based on the

Matrix algorithm simulation framework [36]. The following will briefly summarize

the main features of the system. A more detailed description can be found in

Publication [P1].

In MatrixPro, the animations are created using visual algorithm simulation. In

this approach, the user manipulates visualizations of the underlying structure and

creates a sequence of simulation steps. These steps include basic variable assign-

ments, reference manipulation, and operation invocations such as insertions and

deletions. All the operations are done using direct manipulation, i.e. by drag and

dropping.

Figure 4.2: MatrixPro main window.

The main window of MatrixPro is shown in Figure 4.2. The main functionality

of the system is in the toolbar on the left and the menubar (not shown in the figure).

The toolbar is an essential component which enables users to modify the created

animations. Through the toolbar the user can modify the animation easily, for

CHAPTER 4. EFFORTLESS CREATION OF ALGORITHM ANIMATIONS 20

example, by changing the granularity of the animation sequence. In addition, the

toolbar (as well as the menubar) contains controls for moving backward and forward

in the animation.

The area of visualizations contains the visualizations of the data structures that

the user can interact with in terms of visual algorithm simulation. The simulation

consists of drag and drop operations which can be carried out by picking up the

source and moving it onto the target. Each single operation performs the proper

action for the corresponding underlying data structure. An action is proper if the

underlying data structure object accepts the change (e.g., change of a key value in

a node or change of a reference target).

The main features of the system are the following.

On-the-fly usage The most important feature of MatrixPro is the ability to use

the system on-the-fly. This is achieved by combining the visual algorithm

simulation and a library of ready-made data structures that can be animated.

For example, insertion to a B-tree can be demonstrated by simply drag and

dropping keys on the B-tree visualization.

Customized animations The system supports customization of animations in

two ways. The instructor can use whatever input data he/she wants. In ad-

dition, the granularity level of the animation can be changed, i.e., how large

steps are shown when playing the animation.

Storing and Retrieving Animations Although the system supports on-the-fly

usage, some instructors will want to prepare their animations in advance. For

this purpose, MatrixPro supports storing and retrieving of the created anima-

tions. The animation can be stored as serialized Java objects or exported as

Scalable Vector Graphics (SVG) [65]. In addition, single steps in the animation

can be exported as PNG or TEXdraw [26].

Customizable user-interface The user interface of MatrixPro can be easily cus-

tomized by changing the set of toolbar objects. This allows it to fit the needs

of various users. For example, when demonstrating ready-made animations on

lecture, the instructor probably needs only the animation controls.

Library MatrixPro includes a library of data structures that can be used to produce

animations making the production process less error-prone.

Chapter 5

Algorithm Animation

Languages

In this chapter, we will introduce the main features of the algorithm animation

languages used in the systems listed in Section 3.3. Furthermore, we will summarize

a Taxonomy of Algorithm Animation Languages introduced in Publication [P4].

While reading this chapter, the reader should keep in mind that we deal with

the languages, not the systems. Some of the features considered might be available

in a system, but not through the language the system uses.

5.1 Features of Algorithm Animation Languages

The following subsections show the main characteristics of the algorithm animation

languages. As stated earlier, we see algorithm animation language as a textual

representation describing an algorithm animation or visualization and it should have

a well-defined set of concepts, syntax, and semantics. The distinction between

algorithm animation languages and other languages is slightly fuzzy. The main

principle is that a language has to have something specifically designed for animating

algorithms to be considered an algorithm animation language.

The reader should note that this introduction will not state every feature of the

languages, only the ones that are most common or distinctive. Also, the examples

shown of the languages are often not complete with all the details required in the

language and they most likely cannot be used as-is in any system. For descriptions

of the languages themselves, see Publication [P4]or the cited articles.

21

CHAPTER 5. ALGORITHM ANIMATION LANGUAGES 22

5.1.1 Representation Format

The first noticeable feature is the format of the language. All the languages we

are discussing have a textual format. Listing 5.1 gives a simple example of Ani-

malScript [51], the scripting language of Animal.

1 circle "C" (150, 100) radius 30 color black filled

fillColor red depth 3

2 move "C" along line (130, 80) (130, 170) within 200 ms

Listing 5.1: Example of graphical primitives and basic animation in

AnimalScript.

In the recent languages, XML as a format has become more and more popular

because it makes it easy for software to process data using the multitude of different

tools available. Listing 5.2 gives an example of an XML format, GraphXML [21].

1 <node name="example">

2 <position x="20" y="20"/>

3 <size width="20" height="10"/>

4 </node>

5 <node name="example2">...</node>

6 <edge source="example" target="example2">

7 <path type="polyline">

8 <position x="10" y="5"/>

9 <position x="30" y="5"/>

10 <position x="30" y="20"/>

11 </path>

12 </edge>

Listing 5.2: Example of GraphXML showing node geometry example.

5.1.2 Level of Abstraction

A distinguishing characteristic of the languages is the level of abstraction they use

to describe the animations. One extreme is the languages that use graphical prim-

itives to describe the animations. This approach allows the visualizer to visualize

almost anything he/she wants to. The downside is that the creation of the visual-

izations is often time consuming. Listing 5.3 gives an example of graphical primitive

visualization in JAWAA [2].

CHAPTER 5. ALGORITHM ANIMATION LANGUAGES 23

1 rectangle r1 10 10 100 50 black blue

2 oval o1 10 10 100 50 black orange

Listing 5.3: An example of JAWAA graphical primitives.

The other extreme is the animation languages that describe the animation using

data structures. Listing 5.4 gives an example of using a stack in GaigsXML [44].

1 <snap>

2 <title>Stack example</title>

3 <stack>

4 <list_item color="red">

5 <label>Item 1</label>

6 </list_item>

7 <list_item color="black">

8 <label>Item 2</label>

9 </list_item>

10 </stack>

11 </snap>

Listing 5.4: Example of GaigsXML showing a stack example.

It should be noted, that it is typical for the languages with graphical primitives

to have also some data structures. For example, JAWAA, mentioned in the example

above, includes several data structures as well as the graphical primitives.

5.1.3 Animation

Since we are dealing with algorithm animation, the languages support also animating

the visualizations. Again, animation by modifying the graphical primitives is the

lowest level of abstraction. Listing 5.5 shows an example of graphical primitive

animation of SAMBA [61].

1 circle c1 0.8 0.8 0.1 red half

2 rectangle r1 0.1 0.9 0.1 0.1 blue solid

3 comment Exchanging circle and rectangle!

4 exchangepos c1 r1

Listing 5.5: Example of Samba command language.

The other approach is again to modify the data structures using some of the

operations specified for them. Listing 5.6 gives an example of animating an array

in SALSA [22].

CHAPTER 5. ALGORITHM ANIMATION LANGUAGES 24

1 create array a1 with 3 cells

2 set a1[0] to 1

3 set a1[1] to 6

4 set a1[2] to 11

5 make a1[2] say "swapping me with 6"

6 swap a1[1] with a2[2]

Listing 5.6: Example of SALSA commands.

Listing 5.7 gives an example of using high-level data structure operations in

DsCats language. In the example, keys are inserted into a B-Tree in two steps.

Finally, a key is deleted from the tree. Note also the pause operation that requires

the user to interact with the animation by restarting the play.

1 OPTION DS B-TREE

2 INSERT 20 15 30 2 18 24 70 3 45

3 INSERT 10

4 PAUSE -- End of inserts

5 DELETE 24

Listing 5.7: DsCats command language example. The figure represents the data

structure after the operations are executed.

30

5315

18 7045

1032 1815 4530 7053

103

It should also be noted that not all the languages describe animations as modi-

fications done to the visual objects. For example, GaigsXML approaches animation

by allowing the visualizer to specify discrete snapshots of the state of the data

structures. These snapshots are then visualized by the system.

5.1.4 Programming Concepts

Some of the languages support the creation of animations using programming con-

structs such as variables, conditionals, and loops. Listing 5.8 shows an example of

the AnimalScript2 [53] programming concepts.

CHAPTER 5. ALGORITHM ANIMATION LANGUAGES 25

1 array "values" (10, 10) length 5 int {3, 2, 4, 1, 7}

2 int pos = 1

3 int minIndex = 0

4 arrayMarker "pos" on "values" at Index pos label "pos"

5 arrayMarker "minIndex" on "values" at Index minIndex

label "minIndex"

6 while (pos < 5) {

7 if (values[pos] < values[minIndex]) {

8 minIndex = pos ;

9 moveMarker "minIndex" to position pos within 5 ticks

10 }

11 pos = pos + 1

12 moveMarker "pos" to position pos within 5 ticks

13 }

14 arraySwap on "values" position 0 with minIndex within

10 ticks

Listing 5.8: An example of programming concepts of AnimalScript2 [53].

The figure shows the array before (above) and after (below) the elements are

swapped.

73421

71423

5.1.5 Interaction

Interaction is another feature of some of the animation languages. SALSA, for

example, includes a command to request input data from the user. Listing 5.9 gives

an example of this asking the user to give an integer value for variable var1 and

integer values for elements in array arr1.

1 input var1 as integer between 1 and 20

2 input elements of arr1 as integers

Listing 5.9: Example of SALSA input command.

GaigsXML supports another kind of interaction requiring users of the visualiza-

tion to respond to pop-up questions specified in the language. Listing 5.10 gives

an example of the specification of a question in GaigsXML. Animal has also been

extended to support this kind of interaction [54].

CHAPTER 5. ALGORITHM ANIMATION LANGUAGES 26

1 <show>

2 <snap>

3 ...

4 <question_ref ref="0"/>

5 </snap>

6 ...

7 <questions>

8 <question type="MCQUESTION" id="0">

9 <question_text>What will the value of node A be in

the next step?</question_text>

10 <answer_option>3</answer_option>

11 <answer_option is_correct="yes">8</answer_option>

12 <answer_option>5</answer_option>

13 </question>

14 </questions>

15 </show>

Listing 5.10: Example of GaigsXML’s interactive questions.

5.2 Taxonomy of Algorithm Animation Languages

Based on a survey of the existing algorithm animation languages, we have defined a

Taxonomy of Algorithm Animation Languages to evaluate the languages. The tax-

onomy is introduced in Publication [P4] and we only summarize it here. Figure 5.1

illustrates the two top levels of the taxonomy.

Figure 5.1: Taxonomy of Algorithm Animation Languages.

The main categories of the taxonomy are Animation, Interaction, Positioning,

Style, Utilities, and Vocabulary. In the following, we will briefly describe the main

categories of the taxonomy. For a more detailed discussion, see Publication [P4].

Publication [P4] also evaluates some of the algorithm animation languages intro-

duced in the previous section using the taxonomy, here we only summarize the

findings of the evaluation.

CHAPTER 5. ALGORITHM ANIMATION LANGUAGES 27

Category Animation The category Animation describes the level and versatility

of animation effects available in the language and how the final animation can be

customized through the language. Animation has four subcategories: data structure

(DS) operations, grouping, timing, and visual attribute animation.

Category Interaction The category Interaction describes the type and level of

interaction that can be specified using the language. Interaction has two subcate-

gories: Control and Engagement. When using the taxonomy, emphasis should be

placed on distinguishing between the interaction provided by the tool and interaction

supported by the language. This distinction is not always obvious.

Category Positioning Category Positioning describes the ways available in the

language to position the objects in the animation. Positioning has three subcate-

gories: coordinates, dimensions, and layout.

Category Style The category Style measures the variety of styling options avail-

able in the language. By styling, we mean setting the style of the objects in the

language’s vocabulary. Style is divided in six subcategories: colors, fill style, font,

line style, opacity, and stylesheets.

Category Utilities The category Utilities describes the support of features that

are not directly related to algorithm animation but instead are useful in the anima-

tion creation process. The subcategories in Utilities are comments, debug, extensible,

localization, and metadata.

Category Vocabulary Vocabulary describes the amount of supported object

types. These are the building blocks used to compose the animation. Vocabulary

has four subcategories: data structures, graphical primitives, programming concepts,

and sound.

Summary and Discussion In this section, we have introduced a Taxonomy of

Algorithm Animation Languages. As a result, we have a more detailed overview

of the features and properties of the languages. In Publication [P4] we evaluated

several algorithm animation languages. For comparison purposes we also evaluated

Scalable Vector Graphics (SVG) [65]. The evaluation done could be summarized by

stating again that there are languages supporting graphical primitives and languages

supporting data structures. In addition, SVG has the most advanced features in

CHAPTER 5. ALGORITHM ANIMATION LANGUAGES 28

many of the categories, especially when SVG is used together with ECMAScript.

However, SVG is missing the data structures that are essential in AA.

The evaluation of the languages is straightforward, although it requires quite

deep knowledge and understanding of the evaluated languages. In the future, as AA

languages are developed further and new features emerge, this taxonomy is likely to

be outdated. In such case, updates to the taxonomy should be made. To support

this, we have made an up-to-date version available online1 hoping that the research

community would contribute to it.

1http://svg.cs.hut.fi/aaltaxonomy/

http://svg.cs.hut.fi/aaltaxonomy/

Chapter 6

Data Exchange in Algorithm

Animation

One of the main questions in this work is how to allow data exchange between al-

gorithm animation systems. In this chapter, we will present our solution to the

problem. First, we will introduce the international work aiming at a common algo-

rithm animation language. Based on that work and the taxonomy defined earlier,

we will introduce a new algorithm animation language. Finally, we will describe our

implementation of data exchange using the new AA language.

6.1 ITiCSE Working Group

In the Conference on Innovation and Technology in Computer Science Education

(ITiCSE) 2005 a working group titled ”Development of XML-based Tools to Support

User Interaction with Algorithm Visualization” convened to come up with XML

specifications to support algorithm animation. The group visioned a set of features

of a common algorithm animation language and wrote a report that introduces them

(see Publication [P2]). The different aspects are:� high level objects (often, data structures)� graphical primitives and transformations on them� narrations (text, graphics, and audio) related to the visualization� questions related to the visualization� metadata describing the different resources (questions, animation, etc)

In the next section when we discuss Xaal, we have adopted some of the ready

defined and suitable parts of the WG specifications, in order to support the interna-

29

CHAPTER 6. DATA EXCHANGE IN ALGORITHM ANIMATION 30

tional goal of a uniform algorithm animation language specification. However, most

of the aspects of AA were not formally defined by the working group. Thus, not all

of these specifications are used as a part of the new language.

6.2 XAAL

Based on the Taxonomy of Algorithm Animation Languages and the work by the

ITiCSE Working Group we have defined a new AA language, Xaal (eXtensible Al-

gorithm Animation Language). Xaal is defined as an XML language by specifying

the allowed document structure. XML makes it easy for any software to process

data using the multitude of different tools and architectures available today. In ad-

dition, transforming XML documents to different XML formats or text is relatively

simple and flexible using XSLT (Extensible Stylesheet Language Transformations).

The following will briefly introduce the most important features of Xaal. The

reader should note that this text is merely an overview of the language. For a more

detailed discussion, see Publication [P5] and [27], and for the actual XML schemas,

see the Xaal website1.

Graphical Primitives The basic graphical components that can be composed

to represent arbitrarily complex objects (e.g., a tree data structure) are graphical

primitives. The graphical primitives in Xaal are as specified by the Working Group,

where the following primitives have been defined: point, polyline, line, polygon, arc,

ellipse, circle and circle-segment, square, triangle, rectangle, and text.

Data Structures Xaal supports the usage of data structures to specify the vi-

sualizations, lowering the effort needed to produce them. The set of structures is

basically the same as, for example, in JAWAA [2]: array, graph, list, and tree.

To support the different approaches of existing algorithm animation languages, all

structures support an optional graphical presentation indicating how the structure

should be visualized.

Animation A crucial part of the algorithm animation language is the animation

functionality. The animation operations in Xaal have been divided in three groups:

graphical primitive transformations (for example, rotate), elementary data structure

operations (for example, replace), and abstract data structure operations (for ex-

ample, insert). Every abstract operation can contain the same transformation on a

1http://www.cs.hut.fi/Research/SVG/XAAL/

http://www.cs.hut.fi/Research/SVG/XAAL/

CHAPTER 6. DATA EXCHANGE IN ALGORITHM ANIMATION 31

lower level of abstraction as graphical primitive transformations and as elementary

data structure operations. However, these are both optional.

6.3 Implementing Data Exchange

Publication [P2] describes a general architecture of a system using the specifica-

tions of the group. The architecture describes how to combine the XML documents

describing interesting events (operations, etc), objects, questions, narrations, meta-

data, and graphical primitives into one, complete visualization specification of the

animation. The idea is that this complete visualization specification would then be

used by existing visualization systems through system-specific adapters.

The Xaal language can be seen as a simplified version of the complete visual-

ization specification, as it includes most of the data in the different XML documents

mentioned above. Thus, our objective is to implement Xaal in a way that could

be useful for other developers aiming at implementing the WG specifications.

In this section, we will briefly introduce two different processing pipelines to add

Xaal support into existing algorithm animation systems. For more discussion, see

Publication [P5] and [27].

Object hierarchy The first processing solution is an architecture discussed at the

ITiCSE Working Group to implement the language. This architecture is represented

in Figure 6.1. The basic idea is to have one Xaal parser that can be used by multiple

algorithm animation systems. This parser generates a Java object hierarchy (in the

figure, Xaal objects). In addition, there is a part of software that can serialize the

object hierarchy as a Xaal XML document.

Parser

Serializer

Adapter

XAAL Objects

Document

XAAL

Generator

AA System

Figure 6.1: Integrating Xaal with existing AA systems using an object hierarchy.

The existing AA systems can implement adapters that convert the Xaal object

hierarchy into an animation in that particular system. By implementing a gener-

ator, existing systems can generate the object hierarchy and serialize it as Xaal.

CHAPTER 6. DATA EXCHANGE IN ALGORITHM ANIMATION 32

The natural benefit of this approach is that the object hierarchy allows API based

generation of Xaal animations.

XSL Processing Another way to integrate Xaal with existing systems is repre-

sented in Figure 6.2. In this solution, an existing Xaal document is processed with

an XSL processor using an appropriate XSL stylesheet.

Document

XAAL

Document

XSL

Document

XSL Processor

AA System

AA System

Figure 6.2: Integrating Xaal with existing AA systems using XSL stylesheet ro-
cessing.

The stylesheet is a mapping from Xaal to the language of the target system.

This provides a simple solution to import Xaal documents into existing AA systems

that have an algorithm animation language. It can also be used to export different

formats from a system that supports Xaal. The benefit of this approach is that

the target system needs not be changed at all. This makes it possible to integrate

Xaal with systems that are not open-source.

6.3.1 Prototype Implementations

We have a prototype implementation of the language and transformations between

various existing algorithm animation languages. In the following, we will briefly de-

scribe these prototypes and discuss the advantages and disadvantages of the different

solutions, as well as state the level of Xaal features supported.

Xaal Objects and Xaal Parser The center of the Xaal implementation is

Xaal Objects (XO). This is a collection of Java classes that correspond to the

different elements and attributes in Xaal documents.

The Xaal objects hierarchy can be generated in multiple ways, the most natural

of which is the Xaal parser. The Xaal objects and Xaal parser prototype imple-

mentations support most of the elements and functionality specified in the language.

CHAPTER 6. DATA EXCHANGE IN ALGORITHM ANIMATION 33

However, one major lack is that the current parser does not behave well when the

source document is not well-formed XML.

Adapters and Generators An important part of the implementation is the gen-

erator that allows the generation of Xaal Objects from MatrixPro animations.

The adapter implementation allows us to adapt XO hierarchies to be used in Ma-

trixPro. It essentially generates a MatrixPro animation sequence from the Xaal ob-

jects hierarchy. The adapter supports the data structures and data structure opera-

tions of Xaal. Another adapter allows to view the graphical primitives of Xaal in

JHAVÉ [46].

XSL Stylesheets In this thesis, we have implemented the XSL solution to trans-

late Xaal documents to AnimalScript, JAWAA, and SVG. These implementa-

tions are only prototypes, and do not cover the whole range of features in the

language.

6.4 Evaluation

6.4.1 Taxonomic Evaluation

In this section we will use the taxonomy defined in Publication [P4] to evaluate

Xaal. In addition, we will include the evaluation of SVG and compare Xaal with

SVG. Reason for using SVG is that in Chapter 5 we concluded SVG having the

richest set of features in many of the categories.

Category Animation Evaluation of Xaal in category Animation is in Tables 6.1

and 6.2. Compared to the existing AA languages [2, 15, 22, 51, 53], Xaal has quite

a rich set of data structure operations. However, these require advanced features

from the system implementing the language. SVG, on the other hand, lacks the data

structure and operations on them. Thus, it has no features that make it especially

suitable for algorithm animation.

In both languages, all the style properties (see Category Style) can be changed.

In Xaal, the graphical primitive transformations available are the ones defined

by the ITiCSE XML Working Group. Thus, Xaal fulfills the requirements for an

algorithm animation language as seen by the international AA community. However,

these features are not as versatile as in SVG.

CHAPTER 6. DATA EXCHANGE IN ALGORITHM ANIMATION 34

Table 6.1: Evaluation of the languages in category Animation (1/2).

Language DS operations Grouping Timing

G
ra

n
u
l.

co
n
tr

ol

C
on

cu
rr

en
cy

Xaal create, remove, replace, swap,
insert, delete, and search

yes yes delay, duration

SVG none yes yes delay, duration, min,
max, repeat, key times

Table 6.2: Evaluation of the languages in category Animation (2/2).

Language Visual attribute animation

R
ot

at
e

S
ca

le

S
ty

le

T
ra

n
sl

at
e

Xaal yes yes all style properties move, move relative, move
along

SVG yes yes all style properties move, move relative, move
along

Category Interaction The evaluation of Xaal in category Interaction is rep-

resented in Table 6.3. Since SVG documents can include ECMAScript [1] code

and is often used this way, we have evaluated pure SVG and SVG+ECMAScript

separately. This is because the evaluation results differ significantly.

The only interaction that Xaal supports is pausing the animation. This is a

known lack of the language since interaction is important. However, we decided not

to define any interaction, since the Working Group has not finished its specification.

Thus, we can include more interaction techniques in the language in the future.

SVG+ECMAScript can be considered to support any kind of interaction. For ex-

ample, interaction on responding level can be implemented by showing questions for

the student, thus the type would be pop-up questions.

CHAPTER 6. DATA EXCHANGE IN ALGORITHM ANIMATION 35

Table 6.3: Evaluation of the languages in category Interaction.

Language Control Engagement

T
y
p
e

L
ev

el

Xaal pause none none

SVG none none none

SVG + ECMAScript any any any

Category Positioning Evaluation of Xaal in category Positioning is in Ta-

ble 6.4. Like many of the existing AA languages, Xaal supports 2 dimensions with

the additional depth setting for overlapping objects. Layout for data structures can

be specified in Xaal but this is not required. This allows it to be used in tools that

support automatic layout as well as in tools where the layout must be user specified.

Except for layout, features in SVG are quite similar in this category.

Table 6.4: Evaluation of the languages in category Positioning.

Language Coordinates Dimensions Layout

Xaal absolute, relative to a location 2.5 can be specified but is
not required

SVG absolute, relative 2 n/a

Category Style Evaluation of Xaal in category Style is in Tables 6.5 and 6.6.

Xaal supports colors as RGB values and some predefined color names (the same

17 colors as in CSS2 [8]). Compared to existing AA languages, the styling options

in Xaal are more than adequate. However, SVG has a more diverse set of styling

options, and including these in Xaal remains a future challenge.

The advanced feature compared to the existing AA languages is the support for

reusable and extensible stylesheets. These are not, however, as versatile as in SVG

due to the more limited styling functionality of Xaal.

Category Utilities Evaluation of Xaal in category Utilities is in Table 6.7.

In Xaal, we decided not to use any standard for the metadata due to the sheer

complexity of such standards. Xaal has, however, support for more metadata than

the existing AA languages. We also believe that including a small but specified

CHAPTER 6. DATA EXCHANGE IN ALGORITHM ANIMATION 36

Table 6.5: Evaluation of the languages in category Style (1/2).

Language Colors Fill style Font

F
am

il
y

S
iz

e

V
ar

ia
n
t

Xaal RGB-values,
17 predefined

solid serif, sans serif,
monospaced

yes bold, italic

SVG RGB-values,
16 predefined

solid, gradi-
ent, pattern

serif, sans-serif,
cursive, fantasy,
monospaced, user
specified

yes bold,
italic,
small caps

Table 6.6: Evaluation of the languages in category Style (2/2).

Language Line style Opacity Stylesheets

Xaal arrows, solid, dashed, dotted, width yes yes

SVG width, dash pattern, color, line end, line join yes yes

amount of metadata is more beneficial than allowing arbitrary metadata, as done

in SVG. Again, in future versions, we might decide to also endorse some metadata

standard.

Table 6.7: Evaluation of the languages in category Utilities.

Language Comments Debug Extens. Localiz. Metadata

Xaal yes no yes yes author, application
used, and animation
description, subject,
and keywords

SVG yes yes yes yes any

Category Vocabulary Evaluation of Xaal in category vocabulary is in Ta-

ble 6.8. The graphical primitives in Xaal are the same supported by most of

the AA languages and SVG. However, there are more data structures supported in

Xaal than in SVG. Programming concepts are currently not supported in Xaal and

CHAPTER 6. DATA EXCHANGE IN ALGORITHM ANIMATION 37

thus these are not included in the table. SVG with ECMAScript has advanced pro-

gramming functionality.

Table 6.8: Evaluation of the languages in category Vocabulary.

Language Data structures Graphical primitives Sound

Xaal array, graph, list, and tree point, polyline, polygon, line, arc,
ellipse, circle and circle-segment,
square, triangle, rectangle, and text

yes

SVG none rectangles, circles, ellipses, polylines,
polygons, text

no

6.4.2 Implementation-based Evaluation

Although the language does not include some of the most complex features that came

up (for example, programming concepts), Xaal is still quite a complex language.

The current prototype implementation is a good indicator of this, since the original

aim of this thesis was to provide a full implementation. However, that was not

achieved due to the limited time to finish the thesis.

Nevertheless, we can consider the feasibility of Xaal as an intermediate lan-

guage. The main problem in the implementation are the different levels of abstrac-

tion. Transformations of animations from one abstraction level to another are bound

to lose some information. In addition, unless the source format includes all the nec-

essary information, it is difficult to transform animations between different levels of

abstraction. For example, so far the only system capable of adding graphical primi-

tive information into Xaal documents is MatrixPro. Thus, we must include another

processing step when transforming a Xaal document containing only data struc-

tures into, say, SVG. Another problem is caused by languages such as GaigsXML,

where the structure of the language is based on snapshots of the animation. Since

Xaal presents the animation as modifications to the elements, conversion of anima-

tion between these languages would probably require some complex XSL templates.

However, we believe that this could definitely be implemented.

All in all, the transformations from Xaal to the other languages is pretty

straightforward. An interesting problem would be to try to transform, for example,

AnimalScript into Xaal, and try to recognize possible data structures from the

graphical primitives. In this thesis, we did not, however, have the time to implement

an AnimalScript parser that would be required to do such transformations.

Chapter 7

Discussion

In this chapter, we will summarize our work and address the research questions.

First, we will discuss the first question: ”How can we develop algorithm animation

systems to lower the effort needed to produce algorithm visualizations for teaching?”

Next, we will tackle the second problem: ”How can we enable data exchange between

the existing algorithm animation systems?” Finally, we will consider possible future

directions of this research.

7.1 Lowering the Effort

To make the algorithm animation production more effortless, we started researching

what is effortless production. In the first step we identified that there are either

specific, low effort systems or general, high effort systems [29]. This research was,

however, our subjective view of the subject. The next step was a survey targeting

computer science educators [30]. The survey resulted in an initial set of measures

for effortlessness. Finally, in Publication [P3] we introduced a taxonomy of effortless

creation of algorithm animations.

In the first step of the research on effortlessness, we found that Matrix [36]

allowed effortless creation of animations. However, it was a research prototype

demonstrating the features of the framework and not suitable for end-users. Thus,

we developed a Matrix-based application, MatrixPro (see Publication [P1]). Matrix-

Pro was designed to support on-the-fly demonstrations without the need to prepare

all the examples before lectures. The most important feature supporting this was the

automatic animation of several ready made data structures. MatrixPro is effortless

to use for the narrow scope it was designed.

38

CHAPTER 7. DISCUSSION 39

7.2 Data Exchange

To allow data exchange, we have first surveyed a number of algorithm animation

systems and the algorithm animation languages they use. Based on this survey, we

have defined a Taxonomy of Algorithm Animation Languages to help in comparing

the different AA languages. This taxonomy helped us in defining a new algorithm

animation language, eXtensible Algorithm Animation Language, Xaal.

Xaal supports both of the two main approaches in the existing AA languages:

graphical primitives and data structures. We have implemented various adapters

and generators between Xaal and other algorithm animation languages. The cur-

rent selection of formats is presented in Figure 7.1. As can be seen, MatrixPro

is currently the only AA system capable of creating Xaal animations. In addi-

tion, we have a transformation from SVG to Xaal. Xaal documents can then be

transformed to AnimalScript, JAWAA, and SVG, or viewed with a JHAVÉ visu-

alization plugin. Thus, we already have several different formats available for the

same animation.

Figure 7.1: Prototype format transformations implemented in this thesis. The ar-
rows represent the direction of the transformation.

When considering the current implementation from the effortlessness point of

view, we can say that we have made it possible to transform animations from an

effortless system (MatrixPro) to more general purpose tools (Animal, JAWAA,

SVG). This allows us, for example, to easily create an example of a complex topic,

say B-Tree in MatrixPro, transform it to AnimalScript and customize the anima-

tion with Animal. In addition, as the JHAVÉ system is intended as a visualization

platform, Xaal implementation for that platform is a good step towards more gen-

eral tool integration.

In Chapter 6, we introduced two different processing pipelines to implement the

data exchange: 1) parsing the Xaal document into a set of (Java) objects and

transforming that, and 2) transforming the Xaal document using XSLT. A future

CHAPTER 7. DISCUSSION 40

challenge is to implement data exchange between more systems. Thus, the following

considers the suitability of the two processing pipelines for the different visualization

specification styles introduced in Section 3.2.

Topic-Specific Animation As topic-specific animations are not animation sys-

tems, it probably is not worth the effort to implement any data exchange with

such animations.

Direct Manipulation Direct manipulation as a visual specification style can be

implemented in a multitude of ways. Thus, it is not feasible to speculate how

the data exchange with such a system could be implemented as it depends

completely on the system architecture. For example, the Xaal import/ex-

port in MatrixPro is implemented by transforming an animation between the

internal object hierarchy of Matrix and the Xaal object hierarchy.

API-based Generation In API-based generation there is some programming API

that can be used to generate the animations. Thus, the natural method for

implementing data exchange in such cases is to transform the Java object

hierarchy to suitable method calls of the API.

Scripting-based Generation In scripting-based generation, the animation sys-

tem has some scripting language (or, algorithm animation language) that

it understands. Thus, using XSLT to transform Xaal documents into this

scripting language is the most sensible option. However, transforming the

object hierarchy might be a useful solution as well, especially if there are

significant differences between Xaal and the target language. When trans-

forming an animation from the scripting language to Xaal, XSLT is a suitable

solution if the scripting language is XML. Otherwise, it requires a parser of

the scripting language.

Declarative Visualization In declarative visualization, the visualization is spec-

ified by declaring a mapping between a program state and a graphical repre-

sentation. Generally, transforming between this mapping and Xaal is not a

suitable approach, since Xaal does not have a program state attached. Thus,

the best approach is again completely dependent on the system architecture.

Code Interpretation Implementing data exchange with a tool that uses code in-

terpretation is not meaningful from Xaal to the system. The other way

around, it could be beneficial. However, the implementation depends com-

pletely on the architecture of the system.

From the discussion above, we can summarize that it is not obvious in most

of the cases how the data exchange is best implemented. The best approach is

CHAPTER 7. DISCUSSION 41

typically dependent on the architecture of the animation system. However, in the

case of API-based generation and Scripting-based generation, natural choices are

transforming the Java object hierarchy and XSL transformations, respectively. It

should be noted, that often systems have more than one visualization specification

style so there will be different possibilities to implement data exchange as well.

7.3 Future Work

As can be seen in the evaluation of Xaal in the previous chapter, it does not

have all the necessary features at this point. We have numerous improvements and

ideas for the future of the language, and here we will write down some of the most

interesting ones. The most urgent requirement is naturally to finish the prototype

implementation of the parser and the adapters and generators. A future challenge

is to be able to generate Xaal documents with other systems, or alternatively,

parse/transform other formats into Xaal.

The language could be extended to include programming concepts and thus allow

the definition of algorithms and program visualization. This could be achieved, for

example, by allowing o:XML1 notation to be included in Xaal documents.

Support for interaction should also be added to the language. This could possibly

use the specification of the ITiCSE XML Working Group once it finishes the defini-

tions. Another option is to adopt the questions from the specification of GaigsXML.

Yet another future goal is to allow easy integration of algorithm visualizations

into hypertextbooks [55]. One way to integrate Xaal animations into hypertext-

books is the implementation for the JHAVÉ environment. However, there could be

even easier ways to do this by allowing the end-users (in our case, students) to view

algorithm animations without a dedicated algorithm animation system. Our vision

is to implement a viewer for Xaal animations for the web browsers. With the rapid

development of JavaScript libraries2 to aid in such process, it would be interesting

to implement such a viewer using only HTML and JavaScript.

7.4 Final Remark

We feel that the new language can be successfully used in exchanging data between

different algorithm animation systems. However, it would require a more complete

implementation of the language and the adapters and generators to get the full

benefit of the language.

1o:XML is an XML language for object-oriented programming, see http://www.o-xml.org/.
2For example, Dojo, MooTools, Prototype, and Scipt.aculo.us just to mention a few.

http://www.o-xml.org/

Appendix A

Algorithm animation systems

In this section, we will introduce in more detail some of the algorithm animation

systems introduced in Section 3.3. The reader should note that these descriptions are

not supposed to be exhaustive feature lists of the tools. They are merely intended

to give a general overview of the tools and give relevant information about the

I/O functionality and implementation of the languages. Thus, we encourage the

interested reader to read more about the tools from the cited articles.

A.1 ALVIS

General ALgorithm VIsualization Storyboarder (ALVIS) [22] is an interactive

algorithm visualization system designed to create and view low-fidelity algorithm

visualizations. In low-fidelity visualizations, the algorithm is illustrated with few

inputs using a sketched, unpolished appearance.

Goal and targeted users The goal of the system is to make presenting algo-

rithms easy and the system includes features supporting this. The system has been

used in an undergraduate algorithmics course.

Animation specification The generation of the animations is done using direct

manipulation. In addition, the tool supports dynamic modification of the animation

by directly inserting commands of the language of ALVIS, SALSA, into the code.

Interaction The system is designed to support interaction levels constructing and

presenting, thus it has several features supporting this. The direction of execution

can be reversed to go back to a previous view. For highlighting interesting parts

while showing the visualization, the tool includes a presentation pointer tool. More-

over, there is a tool that can be used as a mark-up pen to dynamically annotate the

animation.

42

APPENDIX A. ALGORITHM ANIMATION SYSTEMS 43

I/O As stated above ALVIS uses a command language called SALSA. The SALSA

scripts can be saved and loaded with the system.

Implementation ALVIS is implemented using Visual Studio .NET, thus the sys-

tem is platform dependent. ALVIS is intended to be used as-is, so no implementation

on the behalf of the user is possible or required.

A.2 Animal

General Animal [52] is a general-purpose animation tool with a current focus on

algorithm animation.

Goal and targeted users Animal is designed to support multiple roles. The

tool has features for developers, visualizers, and users. The authors of the tool feel

that the most important of these is the user that views the animations.

Animation specification Visualizers are provided with three different methods

to specify the animation. He/she can use the graphical editor to create the ani-

mations by drag and dropping graphical elements. Another method is to use the

scripting language, AnimalScript [51]. Finally, the tool supports generation of the

scripts through a Java API. The developers of the system expect advanced users to

use either the scripting language or the API.

Interaction The tool offers a viewer with versatile controls over the animation

for viewing and presenting. The user is also able to set the speed and scale of the

animation.

Animal has also been extended to support responding by adding multiple-choice

questions to the animations that require answers from users before continuing the

viewing [54].

I/O Scripts in the AnimalScript language can be saved and loaded with the

system. Animal also supports a wide variety of export formats including BMP,

JPG, PNG, Photoshop PSD, and QuickTime videos.

Implementation The tool is implemented in Java and offers developers the pos-

sibility to add extensions to the tool. These extensions can be, for example, new

graphical primitives, animation effects, scripting commands, or import/export fil-

ters. In addition, making an internationalized version for a new language is straight-

forward.

APPENDIX A. ALGORITHM ANIMATION SYSTEMS 44

A.3 DsCats

General Data Structure Computer Animation Tools (DsCats) [15] is an applica-

tion focused on learning data structures and algorithms.

Goal and targeted users The goal of the tool is to help learning of basic data

structures and algorithms. It is intended for students as a self-study material.

Animation specification The animations can be created either by using the tool

or by writing a text file using a simple command language. In the tool, inserting

and deleting keys to and from the structures is done by simply entering the key

values and pressing appropriate buttons.

Interaction The tool has many features supporting viewing of animations. The

most important features include the ability to move backward and forward in the

animation sequence, support for visualizing large data sets, and the possibility to

vary the level of detail of the animation. The tool also automatically adds com-

ments on the steps when inserting or deleting keys into the structures making the

animations useful as self-study material.

I/O In the tool, the animations can be saved and restored. For this purpose, the

system includes a simple command language.

Implementation The current version of the tool includes implementations for

tree structures (binary search tree, AVL-tree, and B-tree). However, the tool is

implemented in Java and is designed to be extensible, thus allowing users to extend

the selection of data structures. This can be done by extending one base class of

the tool.

A.4 JAWAA

General JAWAA 2.0 [2] (in the following, simply JAWAA) is a data structure

and algorithm animation system that consists of three parts: a scripting language,

graphical editor, and an applet capable of showing animations defined in the script-

ing language.

Goal and targeted users The tool has been used on CS courses of different levels

giving students tasks to construct visualizations of data structures and algorithms

with JAWAA.

Animation specification JAWAA supports two ways to create the animations.

The JAWAA Editor is a graphical user interface allowing the visualizer to create

animations graphically. This is done by laying out primitive objects and modifying

them to produce animations. The animations are defined by changing the states

APPENDIX A. ALGORITHM ANIMATION SYSTEMS 45

of the objects across time. Another way is to write or generate the animations

using the JAWAA scripting language. These methods can of course be combined by

creating the layout of the objects with the editor and then modifying these objects

using output of a program.

Interaction The JAWAA applet that views the animations provides basic control

over the animation. The user can play, stop, and pause it as well as change the

speed. The authors of the system use the whole JAWAA system in teaching by

requiring students to construct animations.

I/O The animations in the JAWAA Editor can be saved and loaded in an internal

format. Animations can also be exported in the JAWAA scripting language and

added to web pages to be viewed with the JAWAA applet.

Implementation JAWAA is implemented in Java and is freely available with the

source code. However, extending is not documented by the authors and the system

is intended to be used as-is.

A.5 JHAVÉ

General JHAVÉ [46] is not an AV system but rather an environment for different

AV systems called AV engines. The aim of the environment is to provide a standard

user interface for students.

Animation specification As JHAVÉ itself is not an AV system, animation spec-

ification is not supporter. However, the different AV engines support different types

of animation specification. The main AV engine, Gaigs, supports animation specifi-

cation through API-calls and has an XML-language [44]. Another AV engine is the

Xaal engine implemented as part of this thesis.

Interaction JHAVÉ environment offers standard VCR-like controls for the user.

Furthermore, it supports engagement level responding by offering functionality to

ask users multiple-choice questions.

I/O The animations are loaded by the AV engines, typically from text files. The

Gaigs AV engine loads the animations from GaigsXML-files and Xaal AV engine

from Xaal-documents. In addition, there are AV engines that render Samba and

AnimalScript animations.

Implementation JHAVÉ is implemented in Java but the source code is not freely

available at the moment of writing. However, documentation on how to extend the

system is available.

APPENDIX A. ALGORITHM ANIMATION SYSTEMS 46

A.6 JSAMBA

General JSAMBA [59] is a front-end for the POLKA [58] algorithm animation

system. Basically, it is a viewer to visualize animations written in the Samba script-

ing language [61].

Animation specification The animations are specified by entering (or copy past-

ing) Samba commands into a text area. The system does not include an animation

editor.

Interaction The tool offers basic control over the animation with play, step, and

pause controls as well as the possibility to change the speed of the animation.

I/O Since the tool is an applet, it has no access to the file system and the animation

scripts are either selected from a menu of a variety of ready made examples or

typed/cut and pasted as Samba commands into a text area.

Implementation The tool is implemented in Java and is freely usable in the

Internet, but the source code or API documentation is not available. Thus, the tool

cannot be extended.

A.7 MatrixPro

General MatrixPro (see Publication [P1] for details) is a system to create algo-

rithm animations using visual algorithm simulation.

Goal and targeted users MatrixPro is targeted for computer science educators

to use on lectures. The main idea is to support on-the-fly usage, thus enabling the

instructor to create the animations during the lecture. For the students, the tool

offers numerous automatically assessed exercises [40].

Animation specification The animations are specified using visual algorithm

simulation. The simulation consists of manipulating visual representations of actual

data structures through a graphical user interface. The tool includes a library of

data structures that the user can operate on.

Interaction To support the presenting of animations, the tool has a number of

useful features. For example, the tool offers ways to customize the animations and

the user interface.

The exercises for students offer interaction where the user has to simulate the

working of an algorithm. Student’s simulation sequence can then be automatically

assessed.

APPENDIX A. ALGORITHM ANIMATION SYSTEMS 47

I/O The animations created with MatrixPro can be saved as serialized Java ob-

jects or exported as Scalable Vector Graphics animations. A view in the animation

can be saved into an ASCII file or exported in TEXdraw format to be included in

LATEX documents. In the current version, the view or animation can also be ex-

ported as a series of PNG pictures. As part of this thesis, we have also implemented

Xaal export.

Implementation MatrixPro is based on the Matrix algorithm simulation frame-

work [34] that is implemented in Java and designed to be extended. For example, a

developer can add new data structures or layouts for the visualizations.

Bibliography

[1] ECMAScript language specification, 3rd ed. Technical report, Ecma Interna-

tional, December 1999.

[2] Ayonike Akingbade, Thomas Finley, Diana Jackson, Pretesh Patel, and Su-

san H. Rodger. JAWAA: easy web-based animation from CS0 to advanced CS

courses. In Proceedings of the 34th SIGCSE technical symposium on Computer

science education, SIGCSE’03, pages 162–166, Reno, Navada, USA, 2003. ACM

Press.

[3] Jay Martin Anderson and Thomas L. Naps. A context for the assessment

of algorithm visualization systems as pedagogical tool. In Proceedings of the

First Program Visualization Workshop, pages 121–130, Porvoo, Finland, 2001.

University of Joensuu.

[4] Ronald M. Baecker. Two systems which produce animated representations

of the execution of computer programs. In Proceedings of the fifth SIGCSE

technical symposium on Computer science education, SIGCSE’75, pages 158–

167. ACM Press, 1975.

[5] Ronald M. Baecker. Sorting out sorting. Narrated colour videotape, 30 minutes,

1981.

[6] Ronald M. Baecker. Sorting out sorting: A case study of software visualiza-

tion for teaching computer science. In M. Brown, J. Domingue, B. Price, and

J. Stasko, editors, Software Visualization: Programming as a Multimedia Ex-

perience, chapter 24, pages 369–381. The MIT Press, Cambridge, MA, 1998.

[7] S. Bassil and RK Keller. Software visualization tools: survey and analysis. Pro-

gram Comprehension, 2001. IWPC 2001. Proceedings. 9th International Work-

shop on, pages 7–17, 2001.

48

BIBLIOGRAPHY 49

[8] Bert Bos, Tantek Çelik, Ian Hickson, and H̊akon Wium Lie. Cascading Style

Sheets, CSS 2.1 specification. W3C Candidate Recommendation, World Wide

Web Consortium, July 2007.

[9] M. H. Brown and R. Raisamo. JCAT: Collaborative active textbooks using

Java. Computer Networks and ISDN Systems, 29(14):1577–1586, 1997.

[10] Marc H. Brown. Fundamental techniques for algorithm animation displays. In

M. Brown, J. Domingue, B. Price, and J. Stasko, editors, Software Visualiza-

tion: Programming as a Multimedia Experience, chapter 7, pages 82–101. The

MIT Press, Cambridge, MA, 1998.

[11] Marc H. Brown and John Hershberger. Color and sound in algorithm animation.

Computer, 25(12):52–63, 1992.

[12] Marc H. Brown and Marc A. Najork. Algorithm animation using 3D inter-

active graphics. In Proceedings of the 6th annual ACM symposium on User

interface software and technology, UIST’93, pages 93–100, Atlanta, Georgia,

United States, 1993. ACM Press.

[13] Marc H. Brown and Robert Sedgewick. A system for algorithm animation. In

Proceedings of the 11th annual conference on Computer graphics and interactive

techniques, SIGGRAPH’84, pages 177–186. ACM Press, 1984.

[14] Marc H. Brown and Robert Sedgewick. Techniques for algorithm animation.

IEEE Software, 2(1):28–39, January 1985.

[15] Justin Cappos and Patrick Homer. DsCats: Animating data struc-

tures for CS2 and CS3 courses. Technical paper published online, 2002.

http://www.cs.arizona.edu/dscats/dscatstechnical.pdf.

[16] C. Demetrescu and I. Finocchi. Smooth animation of algorithms in a declarative

framework. Journal of Visual Languages and Computing, 12(3):253–281, 2001.

[17] S. Diehl. Software visualization: Visualizing the Structure, Behaviour, and

Evolution of Software. Springer New York, 2007.

[18] Joan M. Francioni, Larry Albright, and Jay Alan Jackson. Debugging parallel

programs using sound. SIGPLAN Notices, 26(12):68–75, December 1991.

http://www.cs.arizona.edu/dscats/dscatstechnical.pdf

BIBLIOGRAPHY 50

[19] P. A. Gloor. User interface issues for algorithm animation. In M. Brown,

J. Domingue, B. Price, and J. Stasko, editors, Software Visualization: Pro-

gramming as a Multimedia Experience, chapter 11, pages 145–152. The MIT

Press, Cambridge, MA, 1998.

[20] Jyrki Haajanen, Mikael Pesonius, Erkki Sutinen, Jorma Tarhio, Tommi

Teräsvirta, and Pekka Vanninen. Animation of user algorithms on the Web. In

Proceedings of Symposium on Visual Languages, pages 360–367, Isle of Capri,

Italy, 1997. IEEE.

[21] Ivan Herman and M. Scott Marshall. GraphXML - an XML-based graph de-

scription format. In Graph Drawing, pages 52–62, 2000.

[22] Christopher D. Hundhausen and Sarah A. Douglas. Low-fidelity algorithm visu-

alization. Journal of Visual Languages and Computing, 13(5):449–470, October

2002.

[23] Christopher D. Hundhausen, Sarah A. Douglas, and John T. Stasko. A meta-

study of algorithm visualization effectiveness. Journal of Visual Languages and

Computing, 13(3):259–290, June 2002.

[24] Juha Hyvönen and Lauri Malmi. TRAKLA – a system for teaching algorithms

using email and a graphical editor. In Proceedings of HYPERMEDIA in Vaasa,

pages 141–147, 1993.

[25] Petri Ihantola, Ville Karavirta, Ari Korhonen, and Jussi Nikander. Taxonomy

of effortless creation of algorithm visualizations. In Proceedings of the 2005

international workshop on Computing education research, pages 123–133, New

York, NY, USA, 2005. ACM Press.

[26] Peter Kabal. TEXdraw – PostScript drawings from TEX. Web page, 1993.

http://www.tau.ac.il/cc/pages/docs/tex-3.1415/texdraw_toc.html.

[27] Ville Karavirta. XAAL - extensible algorithm animation language.

Master’s thesis, Department of Computer Science and Engineering,

Helsinki University of Technology, December 2005. Available online at

http://www.cs.hut.fi/Research/SVG/publications/karavirta-masters.pdf.

[28] Ville Karavirta, Ari Korhonen, Lauri Malmi, and Kimmo St̊alnacke. MatrixPro

- A tool for on-the-fly demonstration of data structures and algorithms. In

Proceedings of the Third Program Visualization Workshop, pages 26–33, The

University of Warwick, UK, July 2004.

http://www.tau.ac.il/cc/pages/docs/tex-3.1415/texdraw_toc.html
http://www.cs.hut.fi/Research/SVG/publications/karavirta-masters.pdf

BIBLIOGRAPHY 51

[29] Ville Karavirta, Ari Korhonen, Jussi Nikander, and Petri Tenhunen. Effortless

creation of algorithm visualization. In Proceedings of the Second Annual Finnish

/ Baltic Sea Conference on Computer Science Education, pages 52–56, October

2002.

[30] Ville Karavirta, Ari Korhonen, and Petri Tenhunen. Survey of effortlessness

in algorithm visualization systems. In Proceedings of the Third Program Vi-

sualization Workshop, pages 141–148, The University of Warwick, UK, July

2004.

[31] Andreas Kerren and John T. Stasko. Algorithm animation. In Stephan Diehl,

editor, Software Visualization: International Seminar, pages 1–15, Dagstuhl,

Germany, 2001. Springer.

[32] Sami Khuri and Hsiu-Chin Hsu. Interactive packages for learning image com-

pression algorithms. SIGCSE Bull., 32(3):73–76, 2000.

[33] K. C. Knowlton. L
6: Bell telephone laboratories low-level linked list language.

16 mm black and white sound film, 16 minutes, 1966.

[34] Ari Korhonen. Visual Algorithm Simulation. Doctoral dissertation (tech rep.

no. tko-a40/03), Helsinki University of Technology, 2003.

[35] Ari Korhonen and Lauri Malmi. Algorithm simulation with automatic assess-

ment. In Proceedings of The 5th Annual SIGCSE/SIGCUE Conference on

Innovation and Technology in Computer Science Education, ITiCSE’00, pages

160–163, Helsinki, Finland, 2000. ACM Press, New York.

[36] Ari Korhonen and Lauri Malmi. Matrix — Concept animation and algorithm

simulation system. In Proceedings of the Working Conference on Advanced

Visual Interfaces, pages 109–114, Trento, Italy, May 2002. ACM Press, New

York.

[37] Ari Korhonen, Erkki Sutinen, and Jorma Tarhio. Understanding algorithms

by means of visualized path testing. In Stephan Diehl, editor, Software Vi-

sualization: International Seminar, pages 256–268, Dagstuhl, Germany, 2002.

Springer.

[38] Markus Krebs, Tobias Lauer, Thomas Ottmann, and Stephan Trahasch.

Student-built algorithm visualizations for assessment: flexible genera tion, feed-

back and grading. In ITiCSE ’05: Proceedings of the 10th annual SIGCSE

BIBLIOGRAPHY 52

conference on In novation and technology in computer science education, pages

281–285, New York, NY, USA, 2005. ACM Press.

[39] Jan Lönnberg, Ari Korhonen, and Lauri Malmi. MVT — a system for visual

testing of software. In Proceedings of the Working Conference on Advanced

Visual Interfaces (AVI’04), pages 385–388, May 2004.

[40] Lauri Malmi, Ville Karavirta, Ari Korhonen, Jussi Nikander, Otto Seppälä,

and Panu Silvasti. Visual algorithm simulation exercise system with automatic

assessment: TRAKLA2. Informatics in Education, 3(2):267 – 288, 2004.

[41] Andres Moreno, Niko Myller, Erkki Sutinen, and Mordechai Ben-Ari. Visu-

alizing programs with Jeliot 3. In Proceedings of the International Working

Conference on Advanced Visual Interfaces, pages 373 – 376, Gallipoli (Lecce),

Italy, May 2004.

[42] Brad A. Myers. Taxonomies of visual programming and program visualization.

Journal of Visual Languages and Computing, 1:97–123, 1990.

[43] Marc Najork. Web-based algorithm animation. In Proceedings of the 38th

conference on Design automation, DAC’01, pages 506–511, Las Vegas, Nevada,

United States, 2001. ACM Press.

[44] Thomas Naps, Myles McNally, and Scott Grissom. Realizing XML driven algo-

rithm visualization. In Proceedings of the Fourth Program Visualization Work-

shop, 2006.

[45] Thomas L. Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleis-

cher, Chris Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan

Rodgers, and J. Ángel Velázquez-Iturbide. Exploring the role of visualization

and engagement in computer science education. SIGCSE Bulletin, 35(2):131–

152, June 2003.

[46] TL Naps. JHAVÉ: Supporting Algorithm Visualization. Computer Graphics

and Applications, IEEE, 25(5):49–55, 2005.

[47] Blaine A. Price, Ronald M. Baecker, and Ian S. Small. A principled taxonomy of

software visualization. Journal of Visual Languages and Computing, 4(3):211–

266, 1993.

[48] G. Roman and K. C. Cox. A taxonomy of program visualization systems. IEEE

Computers, pages 97–123, December 1993.

BIBLIOGRAPHY 53

[49] Rockford J. Ross and Michael T. Grinder. Hypertextbooks: Animated, active

learning, comprehensive teaching and learning resource for the web. In Stephan

Diehl, editor, Software Visualization: International Seminar, pages 269–283,

Dagstuhl, Germany, 2002. Springer.

[50] Guido Rößling. Animal-Farm: An Extensible Framework for Algorithm Visu-

alization. Phd thesis, University of Siegen, Germany, 2002. Available online at

http://www.ub.uni-siegen.de/epub/diss/roessling.htm.

[51] Guido Rößling and Bernd Freisleben. Program visualization using Ani-

malScript. In Proceedings of the First Program Visualization Workshop, pages

41–52, University of Joensuu, Finland, 2000.

[52] Guido Rößling and Bernd Freisleben. ANIMAL: A system for supporting multi-

ple roles in algorithm animation. Journal of Visual Languages and Computing,

13(3):341–354, 2002.

[53] Guido Rößling, Felix Gliesche, Thomas Jajeh, and Thomas Widjaja. Enhanced

expressiveness in scripting using AnimalScript 2. In Proceedings of the Third

Program Visualization Workshop, pages 10–17, The University of Warwick, UK,

July 2004.

[54] Guido Rößling and Gina Häussage. Towards tool-independent interaction sup-

port. In Proceedings of the Third Program Visualization Workshop, pages 110–

117, The University of Warwick, UK, July 2004.

[55] Guido Rößling, Thomas Naps, Mark S. Hall, Ville Karavirta, Andreas Ker-

ren, Charles Leska, Andrés Moreno, Rainer Oechsle, Susan H. Rodger, Jaime

Urquiza-Fuentes, and J. Ángel Velázquez-Iturbide. Merging interactive visu-

alizations with hypertextbooks and course management. SIGCSE Bulletin,

38(4):166–181, 2006.

[56] Clifford A. Shaffer, Matthew Cooper, and Stephen H. Edwards. Algorithm

visualization: a report on the state of the field. In SIGCSE ’07: Proceedings of

the 38th SIGCSE technical symposium on Computer science education, pages

150–154, New York, NY, USA, 2007. ACM Press.

[57] J. T. Stasko. TANGO: A framework and system for algorithm animation. IEEE

Computer, 23(9):27–39, 1990.

http://www.ub.uni-siegen.de/epub/diss/roessling.htm

BIBLIOGRAPHY 54

[58] J. T. Stasko and E. Kraemer. A methodology for building application-specific

visualizations of parallel programs. Journal of Parallel and Distributed Com-

puting, 18(2):258–264, 1993.

[59] John T. Stasko. Jsamba - java version of the SAMBA animation program. Avail-

able online at http://www.cc.gatech.edu/gvu/softviz/algoanim/jsamba/.

[60] John T. Stasko. Using direct manipulation to build algorithm animations by

demonstration. In Proceedings of Conference on Human Factors and Computing

Systems, pages 307–314, New Orleans, Louisiana, USA, 1991. ACM, New York.

[61] John T. Stasko. Using student-built algorithm animations as learning aids.

In The Proceedings of the 28th SIGCSE Technical Symposium on Computer

Science Education, pages 25–29, San Jose, CA, USA, 1997. ACM Press, New

York.

[62] John T. Stasko and Charles Patterson. Understanding and characterizing soft-

ware visualization systems. In The Proceedings of the IEEE Workshop on Visual

Languages, pages 3–10, Seattle, WA, USA, 1992.

[63] Linda Stern, Harald Søndergaard, and Lee Naish. A strategy for managing

content complexity in algorithm animation. In Proceedings of the 4th annual

SIGCSE/SIGCUE on Innovation and technology in computer science education,

ITiCSE’99, pages 127–130, Kracow, Poland, 1999. ACM Press.

[64] Paul Vickers and James Alty. CAITLIN: A musical program auralisation tool

to assist novice programmers with debugging. In Proceedings of the Third

International Conference on Auditory Display, ICAD’96, pages 17–24, Palo

Alto, California, United States, 1996.

[65] W3C. Scalable Vector Graphics (SVG) 1.0 specification.

http://www.w3.org/TR/SVG, September 2001.

http://www.cc.gatech.edu/gvu/softviz/algoanim/jsamba/
http://www.w3.org/TR/SVG

P1
Ville Karavirta, Ari Korhonen, Lauri Malmi, and Kimmo St̊alnacke. MatrixPro -

A tool for on-the-fly demonstration of data structures and algorithms. In Proceed-

ings of the Third Program Visualization Workshop, pages 26–33, The University of

Warwick, UK, July 2004.

P2
Thomas Naps, Guido Rößling, Peter Brusilovsky, John English, Duane Jarc, Ville

Karavirta, Charles Leska, Myles McNally, Andrés Moreno, Rockford J. Ross, and

Jaime Urquiza-Fuentes. Development of xml-based tools to support user interaction

with algorithm visualization. SIGCSE Bulletin, 37(4):123–138, December 2005.

P3
Petri Ihantola, Ville Karavirta, Ari Korhonen, and Jussi Nikander. Taxonomy of

effortless creation of algorithm visualizations. In ICER’05: Proceedings of the 2005

international workshop on Computing education research, pages 123–133, New York,

NY, USA, 2005. ACM Press.

P4
Ville Karavirta, Ari Korhonen, and Lauri Malmi. Taxonomy of algorithm animation

languages. In SoftVis ’06: Proceedings of the 2006 ACM symposium on Software

visualization, pages 77–85, New York, NY, USA, September 2006. ACM Press.

P5
Ville Karavirta. Integrating algorithm animation systems. In Proceedings of the

Fourth Program Visualization Workshop (PVW 2006), volume 178 of Electronic

Notes in Theoretical Computer Science, pages 79–87, 4 July 2007.

	Introduction
	Previous Work
	Motivation and Research Problem
	Contributions
	Structure of this Thesis

	Definition of Concepts
	Software Visualization and Algorithm Animation
	Characteristics of Software Visualization Systems
	Roles in Software Visualization
	Algorithm Animation Language
	Other Definitions of Software Visualization

	Algorithm Animation
	History of Algorithm Animation
	Characteristics of Algorithm Animation Tools
	Category Scope
	Category Content
	Category Form
	Category Method
	Category Interaction
	Category Effectiveness

	Algorithm Animation Systems

	Effortless Creation of Algorithm Animations
	Taxonomy of Effortless Creation of Algorithm Visualizations
	MatrixPro

	Algorithm Animation Languages
	Features of Algorithm Animation Languages
	Representation Format
	Level of Abstraction
	Animation
	Programming Concepts
	Interaction

	Taxonomy of Algorithm Animation Languages

	Data Exchange in Algorithm Animation
	ITiCSE Working Group
	XAAL
	Implementing Data Exchange
	Prototype Implementations

	Evaluation
	Taxonomic Evaluation
	Implementation-based Evaluation

	Discussion
	Lowering the Effort
	Data Exchange
	Future Work
	Final Remark

	Algorithm animation systems
	ALVIS
	Animal
	DsCats
	JAWAA
	JHAVÉ
	JSAMBA
	MatrixPro

	Bibliography

