

Mobile crowdsensing of parking space using geofencing and activity recognition

Mikko Rinne and Seppo Törmä **Aalto University**

Organised by:

🗯 HEUREKA

Three Methods of Gathering Parking Status Information

1. Infrastructure sensors

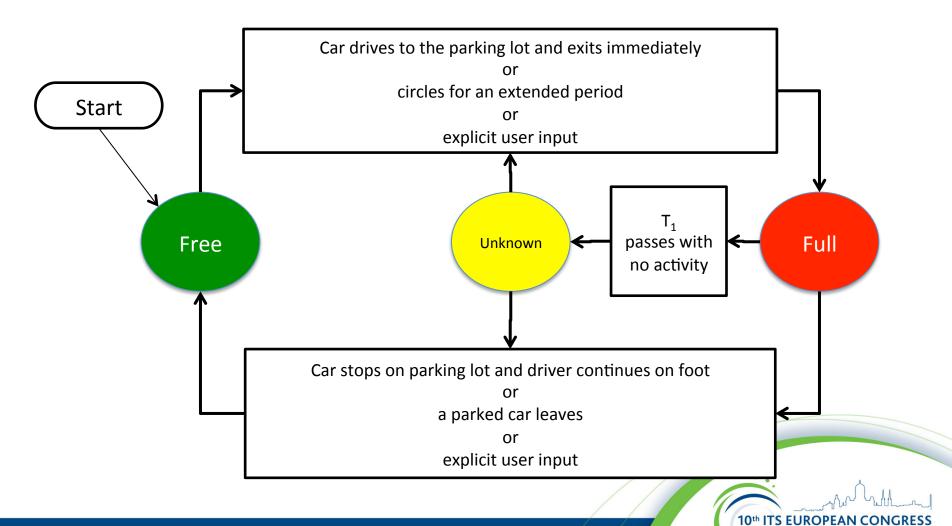
- Loop detectors (or cameras) for entrances of parking areas
- Detectors for individual parking squares
- Requires supporting infrastructure investment

2. Crowdsourcing

- User reporting of parking area status
 - Full, almost full, plenty of space
- Active method requires effort from a user

3. Crowdsensing

- Parking status information gathered from sensors of a mobile device
- Passive method requires only minimal user interaction



Android Sensors

- Geofences
 - A circular geographical area can be defined
 - The service produces <u>Enter</u> and <u>Exit</u> events
- Activity recognition
 - In vehicle, On foot, and On bicycle (also <u>Tilting</u>, <u>Still</u>)
- Fused location provider
 - Combines information from GPS, cell location, Wi-Fi, and sensors (accelerometer, barometer, ...)
 - Improved energy-efficiency and accuracy
 - Enables more accurate indoor location

Parking Area Status from Crowdsensing

Helsinki, Finland | 16-19 June 2014

Patterns of Parking-Related Events

Successful parking

- 1. enter geofence
- 2. in vehicle
- 3. on foot
- 4. exit geofence

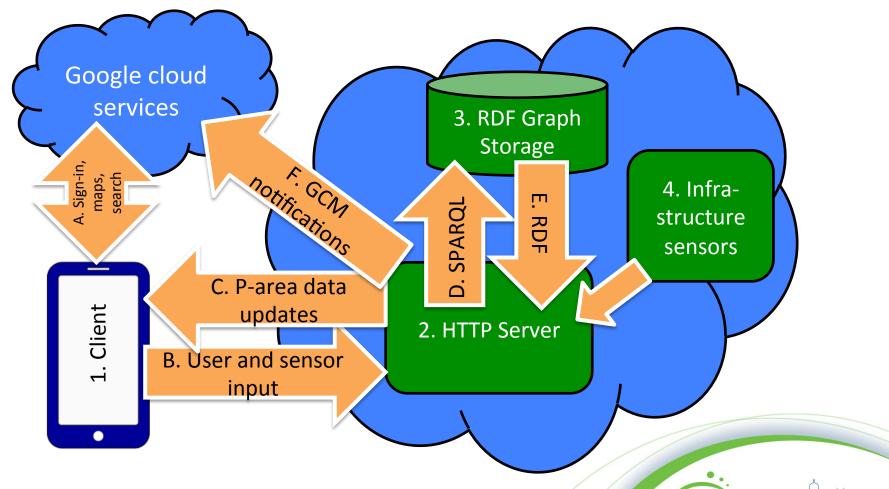
Infer: free space in the parking area

Failed parking attempt

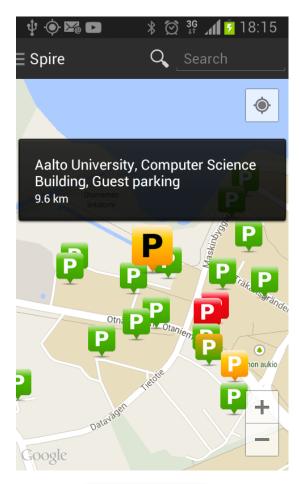
- 1. enter geofence
- 2. in vehicle
- 3. exit geofence (within a short duration)

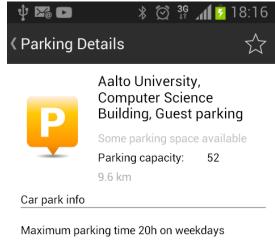
Infer: the parking area is full

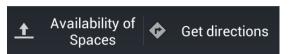
End of parking

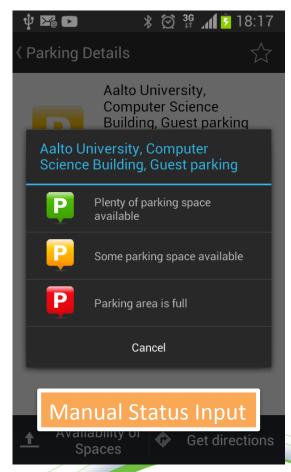

- 1. enter geofence
- 2. on foot
- 3. in vehicle
- 4. exit geofence

Infer: free space in the parking area


Visible and invisible drivers!




SPIRE Application Architecture


Mobile Client Screen Captures

Parking Lot Info

Event Trace Example

Table 1: Sample log of a successfully detected parking procedure

Tuble 1. Sumple log of a successially detected parking procedure		
Time:	Type:	Event:
11:51:45	Geofence	<computer building,="" guest="" parking="" science=""> <enter></enter></computer>
11:51:54	Activity	<in_vehicle></in_vehicle>
11:51:55	Location	60.187546 24.82136
	Location	extra GPS coordinates removed
11:52:40	Location	60.18752 24.821259
11:53:01	Activity	<on_foot></on_foot>
11:53:01	Geofence	<computer building,="" guest="" parking="" science=""> <exit></exit></computer>

Challenges

- Algorithmic imperfections
 - Full parking area detection victim
 - Challenging geometries
 - Drive-thru
 - Small parking areas (Heterogeneous permissions)
 - Drivers invisible to the system
- Technical challenges
 - Power-consumption vs. geofence entry detection
 - Activity recognition uncertainty
- Human factors in crowdsourcing

Conclusions

- Benefits of crowdsensing
 - No infrastructure investment
 - No manual effort from the user
 - Good for large, homogeneous parking areas and high user penetration
- Crowdsensing is not a complete solution
 - Does not work well for all geometries
- Crowdsensing can be one source of information, but it needs to be complemented by infrastructure sensors and crowdsourcing, where appropriate